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Abstract-Search engines, such as Google, assign scores to news ar-

ticles based on their relevancy to a query. However, not all relevant
articles for the query may be interesting to a user. For example, if
the article is old or yields little new information, the article would be
uninteresting. Relevancy scores do not take into account what makes
an article interesting, which would vary from user to user. Although
methods such as collaborative filtering have been shown to be effec-
tive in recommendation systems, in a limited user environment there
are not enough users that would make collaborative filtering effec-
tive. We present a general framework for defining and measuring
the "interestingness" of articles, incorporating user-feedback. We
show 21% improvement over traditional IR methods.

I. INTRODUCTION
An explosive growth of online news has taken place in the last

few years. Users are inundated with thousands of news articles,
only some of which are interesting. A system to filter out uninter-
esting articles would aid users that need to read and analyze many
news articles daily, such as financial analysts, government offi-
cials, and news reporters. Information overload is a threat to a

user's ability to function, resulting in "brain-thrashing" [1], call-
ing for a VIRT (valued information at the right time) [2] strategy
for information handling.

The most obvious approach for a VIRT strategy is to learn
keywords of interest for a user [3-5]. Unfortunately, the issues
related to article recommendation systems are more difficult to
address than applying a simple keyword filter to weed out unin-
teresting articles. Although filtering articles based on keywords
removes many irrelevant articles, there are still many uninterest-
ing articles that are highly relevant to keyword searches. For ex-

ample, searching for "San Francisco" in Google News will yield
about 60,000 articles ordered by relevance. Unfortunately, a rele-
vant article may not be interesting for various reasons, such as the
article's age or if it discusses an event that the user has already
read about in other articles.

Although it has been shown that collaborative filtering can aid
in personalized recommendation systems [6], a large number of
users is needed. In a limited user environment, such as a small
group of analysts monitoring news events, collaborative filtering
would be ineffective. To address this insufficiency to news filter-
ing, we take a different approach by undertaking what makes an

article interesting.
The definition of what makes an article interesting - or its "in-

terestingness" - varies from user to user and is continually evolv-
ing, calling for adaptable user personalization. Furthermore, due
to the nature of news articles, most are uninteresting since many

are similar or report events outside the scope of an individual's
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concerns. There has been much work in news recommendation
systems, but none have yet addressed the question of what makes
an article interesting. In our system, iScore, we make the follow-
ing contributions to news filtering in a limited user environment:

1. We show that filtering based on only topic relevancy is in-
sufficient for identifying interesting articles.

2. We extract a variety of features, ranging from topic rele-
vancy to source reputation. No single feature can character-
ize the interestingness of an article for a user. It is the com-

bination of multiple features that yields higher quality re-

sults. For each user, these features have different degrees of
usefulness for predicting interestingness.

3. We evaluate several classifiers for combining these features
to find an overall interestingness score. Through user-

feedback, the classifiers find features that are useful for pre-

dicting interestingness for the user.

4. Current evaluation corpora, such as TREC, do not capture
all aspects of personalized news filtering systems necessary

for system evaluation.

II. RELATED WORK

A. News recommendation
iScore is a recommendation system in a limited user environ-

ment, so the only available information is the article's content and
its metadata. Work outside collaborative filtering makes use of
this information in a variety of ways.
Work by [7] ranks news articles and new sources based on sev-

eral properties in an online method. They claim that important
news articles are clustered. They also claim that mutual rein-
forcement between news articles and news sources can be used
for ranking, and that fresh news stories should be considered
more important than old ones. In our approach, we rank news

articles based on various properties in an online method, but in-
stead of ranking articles using mutual reinforcement and article
freshness, we study a different variety of features. Additionally,
when training our classifiers, we also take into account that the
most recent news articles are more important than older ones.

Another approach taken by [8] measures the interestingness of
an article as the correlation between the article's content and the
events that occur after the article's publication. For example, an

article about a specific stock is interesting if there is a significant
change in price after the article's publication. Using these pro-

spective indicators, they can predict future interesting articles.
Unfortunately, in most cases, these indicators are domain specific
and are difficult to collect in advance for the online processing of
new articles as they are published.

Other systems perform clustering or classification based on the
article's content, computing such values as TF-IDF weights for
tokens. A near neighbor text classifier [5] uses a document vector
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space model. A personalized multi-document summarization and
recommendation system by [9] recommends articles by suggest-
ing articles from the same clusters in which the past interesting
articles are located. We implement a variation of these methods as
feature extractors in iScore. Another clustering approach, MiTAP
[10] monitors infectious disease outbreaks and other global
events. Multiple information sources are captured, filtered, trans-
lated, summarized, and categorized by disease, region, informa-
tion source, person, and organization. However, users must still
browse through the different categories for interesting articles.

B. Adaptive filtering
Our work in iScore is closely related to the adaptive filtering

task in TREC, which is the online identification of news articles
that are most relevant to a set of topics. The task is different from
identifying interesting articles for a user because an article that is
relevant to a topic may not necessarily be interesting. However,
relevancy to a set of topics of interest is a prerequisite for interest-
ingness. The report by [11] summarizes the results of the last run
of the TREC filtering task. In the task, topic profiles are continu-
ally updated as new articles are processed. The profiles are used
to classify a document's relevancy to a topic. We discuss some of
the work in this TREC task. Like much of the work in the task,
we use adaptive thresholds and incremental profile updates.

In [12], the authors use a variant of the Rocchio algorithm, in
which they represent documents as a vector of TF-IDF values and
maintain a profile for each topic of the same dimension. The pro-
file is adapted by adding the weighted document vector of rele-
vant documents and by subtracting the weighted vector of irrele-
vant documents. Since this approach performed the best in the
task, we incorporate this method in iScore. Other methods ex-
plored in TREC11 include using a second-order perceptron, an
SVM [14], a Winnow classifier [14], language modelling [15],
probabilistic models of terms and relevancy [16], and the Okapi
Basic Search System [17].

C. Ensembles
Other work, like ours, have leveraged multiple existing tech-

niques to build better systems for specific tasks. For example, in
[18], the authors combine two popular webpage duplication iden-
tification methods to achieve better results. Another example is by
[19], which combines the results from multiple outlier detection
algorithms that are applied using different sets of features.
A closely related ensemble work by [20] combines multiple

ranking functions over the same document collection through
probabilistic latent query analysis, which associates non-identical
combination weights with latent classes underlying the query
space. The overall ranking function is a linear combination of the
different ranking functions. They extend the overall ranking func-
tion to a finite mixture of conditional probabilistic models. We
explore two methods of a linear combination approach using cor-
relation and logistic regression, but in contrast to [20], we com-
bine functions that are not necessarily ranking functions that can
be used for ranking documents for interestingness by themselves.
Each function is a different aspect of interestingness and need to
be combined together to generate meaningful scores for interest-
ingness.

III. SYSTEM OVERVIEW
News articles are processed in a streaming fashion, much like

the document processing done in the adaptive filter task in TREC.
The information about an article available to the system is the

Computes the probability of the
article being interesting to a user Adaptive

given its features {f1f2...f.} Thresholdin

Article n
......AIrrtII ..........cI........lili..... lassif.er .....

Weak Feature Interesting?
Extraction

Fig. 1. Article classification pipeline

title, the name of the authors, the publication date, and the main
content of the article. Articles are introduced to the system in
chronological order of their publication date. Once the system
classifies an article, an interestingness judgment is made available
to the system by the user.

The article classification pipeline consists of four phases,
shown in Fig. 1. In the first phase, for an article d, a set of feature
extractors generate a set of feature scores F(d) =tfl(d),
f2(d)..,f(d)}. Then a classifier C generates an overall classifica-
tion score, or an iScore I(d):

I(d) = C(Jl(d),f2(d).ffn(d)) (1)
Next, the adaptive thresholder thresholds the iScore to generate

a binary classification, indicating the interestingness of the article
to the user. In the final phase, the user examines the article and
provides his own binary classification of interestingness (i.e.,
tagging) I'(d). This feedback is used to update the feature extrac-
tors, the classifier, and the thresholder. The process continues
similarly for the next document in the pipeline.

IV. WEAK FEATURES FOR CLASSIFICATION
In this section, we describe a set of article features that will

serve as inputs into the classifier function to estimate or predict
the interestingness of the article to a user. Each individual feature
is a weak feature. In other words, each feature alone cannot de-
termine the interestingness of an article for a user.

A. Topic relevancy
Although an article that is relevant to a topic of interest may

not necessarily be interesting, relevancy to such topics is a pre-
requisite for interestingness for a certain class of users. We use
five different methods to measure topic relevancy.

The first method is the Rocchio adaptive learning method [21].
Documents are represented as a vector d in a vector space. Each
dimension i of the vector space represents a token t,. The value of
the vector element is the represented token's TF-IDF value. In our
experiments, tokens are stems produced by the Porter algorithm
[22]. Stems occurring only once in the collection are discarded to
reduce the feature space, which has been shown to improve clas-
sification time and results [23].

The Rocchio algorithm maintains a profile vector p and up-
dates it as follows:

p = p + d if d is interesting (2)
The relevancy score for the Rocchio algorithm of a document d is
the cosine of the angle between the profile vector and the docu-
ment vector.

The second method for measuring topic relevancy is a variant
of Rocchio by [12], which updates profiles as follows:

8p + a * d if d is interesting
p = p -/3 * d if d is not interesting

l /-8'*d otherwiseandcos(p-,d)<t
(3)
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The first two conditions are satisfied by user taggings. The third
condition is for pseudo-negative documents, which have no tag-
gings and its similarity with the profile is below a threshold.
Good values (in TREC1I) for a, 3, 3', and t are 1, 1.8, 1.3, and
0.6, respectively [12].

The other three methods for measuring topic relevancy use lan-
guage models. An n-gram language modelling approach has been
used for document classification [24], which is a method we use
for finding another set of topic relevancy scores. Like nafve
Bayesian classifiers, language-based modelling classifiers classify
documents given the number of occurrences of grams (e.g., words
or characters) in the document. Unlike naive Bayes, which as-
sumes that grams occur independently, language modelling classi-
fiers assume that a gram occurring is dependent upon the last n -
1 grams. In other words:

N
P(d) = P(g1,g2,.gN) = fl P(gi gi-n+, , gi-1) (4)

i=1
where N is the number of grams in the document and gi is the i-th
gram in the document d. P(gi g1,.,gi-1) can be estimated with
Jelinek-Mercer smoothing [25].

In iScore, the language models are updated as new documents
are processed. However, the estimation of the probabilities is
time-consuming, which is addressed by compiling the models into
serialized objects. However, the compilation time is proportional
to the size of the models (i.e., the number of articles used to up-
date the model), so we minimize the number of times the model is
updated and compiled while still being able to produce meaning-
ful results. We compile the models at regular intervals (i.e., every
time there is an update to the model and on a daily basis). To
avoid biasing the models from classifying articles as uninteresting
(since there are an overwhelming number uninteresting articles
compared to interesting ones) and to reduce compilation time, we
update the models with all interesting articles, and only update the
models with uninteresting articles if the number of uninteresting
articles already used to update the model is less than the number
of interesting article seen.

Using language models, we extract three topic relevancy meas-
urements for each document. The first measurement is P(Int Id),
using a 6-gram character model. Another measurement is
P(Int Id), using a uni-gram model where grams are tokens con-
sisting of two words - equivalent to a naive Bayesian classifier.
The final measurement is log(P(Int, d)), which is the sample
cross-entropy rate between the language model of interesting past
articles and the current article, using a 6-gram character model.

B. Uniqueness
Articles that yield little new information compared to articles

already seen may not be interesting. In contrast, an article that
first breaks a news event may be interesting. Anomalous articles
that describe a rare news event may also be interesting. For exam-
ple, in [26], interesting articles may be produced by rare collabo-
rations among authors. Methods for outlier detection include us-
ing mixture models [27], generating solving sets [28] and using k-
d trees [29], to identify outliers.

The first anomaly measurement we use is the dissimilarity of
the current article with clusters of past articles. Each document is
represented as a document vector, as in the Rocchio algorithm.
We maintain at most maxCluster clusters, which are also repre-
sented by vectors. We also fwmaintain a count of documents that
each cluster contains. The anomaly score is the weighted average
dissimilarity score between the current document and each clus-

ter, weighted by each respective cluster's size (i.e., number of
contained documents):

Ecos(d,p)size(p)

f luster -Anomaly (d) =1.0 1 -p
Esize(p)

p(Ep

(5)

After the article has been evaluated, we update the clusters. If
the similarity between an article and a cluster is above a thresh-
old, then the article is added to the cluster. An article may belong
to more than one cluster. If there are no clusters to which the
document is similar to, then a new cluster is added the list of clus-
ters given the document's vector. If there are already maxClusters
clusters, the cluster that has been updated least is discarded and a
new cluster is added in its place. The least used clusters are
tracked by maintaining an ordered list of clusters where the last
cluster in the list has been most recently updated.

The threshold is also progressively updated. When there have
been few documents seen so far, the threshold is set low to en-
courage document clustering since the cluster sizes are small at
the start of collection processing. As more documents are seen,
the clusters are large enough such that we can accurately identify
outliers, and so the threshold is incremented by growthRate
(reaching a maximum threshold) whenever no new clusters have
been added. In our experiments, we set the maximum threshold,
growthRate, the initial threshold, and maxCluster to 0.5, 0.01,
0.1, and 200, respectively.
Two other methods for anomaly detection use language mod-

els. In the first model, we maintain compiled models trained on
the documents already seen, estimating the following:

fLM-Anomaly (d) = log(P(d documents seen before)) (6)
We experiment with a 6-gram character model, and a bi-gram
model, where grams are word stems.

The second language model-based anomaly detection method
measures the significance and the presence of new phrases. We
maintain a background model of all the documents previously
seen and compare it with the language model of the current docu-
ment. We measure the sum of the significance of the degree to
which phrase counts in the document model exceed their ex-
pected counts in the background model. We consider only the
top-10 phrases that exceed their expected counts. We use a tri-
gram model where grams are word tokens.

Because language models are costly to compile, we compile
the models in increasing intervals. Each time a language model is
compiled, the next recompile is scheduled to occur after seeing
the next x + 1 documents, where x is the number of documents
seen before the current compile time. This increasing interval
scheduling allows for language models to be updated and com-
piled frequently when there have been few documents seen. But
after seeing many documents, language models should not change
much unless there is a significant change in the contents of the
articles seen, so the recompile intervals are increased as more
documents are seen, capping off at 10,000 documents for the
recompile interval.

C. Source reputation
Source reputation estimates an article's interestingness given

the source's past history in producing interesting articles. Articles
from a source known to produce interesting articles tend to be
more interesting than articles from less-reputable sources. More-
over, specific sources may specialize in particular topics in which
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the user is interested. A news article's source may be its news
agency or its author. In our experiments, we use the article's au-
thor(s). We estimate the article's source reputation score as the
average proportion of documents produced by the authors that
were interesting in the past:

E In#t articles written by a

aeauthors(d) # Articles written by a
fSource Rep (d) = authors(d) (7)

D. Writing style
Most work using the writing style of articles has mainly been

for authorship attribution of news articles [30] and blogs [31].
Other than authorship attribution, changes in linguistic features
over the course of a document have been used to segment docu-
ments as well [32]. Instead of author attribution and document
segmentation, we use the same writing style features to infer in-
terestingness. For example, the vocabulary richness of an article
should suit the user's understanding of the topic (e.g., a layman
versus an expert). Also writing style features may help with au-
thor attribution, which can be used for classifying interestingness,
where such information is unavailable.
We use a naive Bayesian classifier trained on a subset of the

features from [30], including syntactic, structural, lexical, word-
based, and vocabulary richness features. Like the language mod-
els used in the topic relevancy measurements, we balance the
number of positive and negative articles used to update the classi-
fier. The writing style score measured is:

fwriting-Style (d) = P(Int writingStyleFeatures(d)) (8)

E. Freshness
Generally, articles about the same event are published around

the time the event has occurred. This may also be the case for
interesting events, and consequently interesting articles, so we
measure the temporal distance between the last k interesting arti-
cles and the current article:

fFreshness (d) = log(Time(d) - Time(d') + 1) (9)
k d'elast k Int articles

We measure the log of the temporal distance between an inter-
esting article and the current article since we are interested in the
order of magnitude in time differences. For example, an article
published one day after the last interesting article should be sig-
nificantly more interesting than an article published 100 days
after the last interesting article. On the other hand, two articles
published long after the last interesting article should be ap-
proximately equally old, with respect to the last interesting article,
even though they may have been published 1000 and 1500 days,
respectively, after the last interesting article.

F. Subjectivity andpolarity
The sentiment of an article may also contribute to a user's defi-

nition of interestingness. For example, "bad news" may be more
interesting than "good news" (i.e., the polarity of the article). Or,
subjective articles may be more interesting than objective articles.
Polarity identification has been done with a dictionary [33] and
blog-specific features [34]. Others have looked at subjectivity
tagging, using various NLP techniques [35]. The density of sub-
jectivity clues in the surrounding context of a word has been used
to infer its subjectivity [36] as well.
We measure four different features of this feature class: polar-

ity, subjectivity, objective speech events, and subjective speech

events. A speech event is a statement made by a person, such as a
quotation. Using the MPQA corpus [37] to train 6-gram character
language model classifiers, we classify each sentence in the
document to determine its polarity, subjectivity, and the presence
of objective or subjective speech events. The MPQA corpus is a
new article collection from a variety of news sources annotated
for opinions and other states, such as beliefs, emotions, senti-
ments, and speculations. For each document and each feature in
this feature set, we measure:

fclass (d) = 1 P(class s)
sentences(d) sesentences(d)

(10)

where class is whether the sentence has negative polarity (i.e.,
bad news), the sentence contains subjective content (i.e., opin-
ions, speculation), the sentence contains an objective speech
event, or the sentence contains a subjective speech event.

V. CLASSIFICATION
The overall classifier computes the final iScore given all the

features values generated by the feature extractors. Because the
features are continually refined as more documents are seen, some
of the feature values may be erroneous for early documents. Also,
not all the features may be useful in predicting interesting articles
for a user, depending on the user's criterions. The addition of
useless features has been shown to degrade the performance of
classifiers [38]. Consequently, an overall classifier must be in-
crementally updateable, robust against noisy and potentially use-
less features, and generate meaningful final scores for interest-
ingness. We evaluate four classes of classifiers: a naive Bayesian
classifier, non-incremental classifiers using a sliding window,
temporal inductive transfer classifiers, and a linear combination
using correlation for weights.

A. Naive Bayesian classifier
A naive Bayesian classifier is a simple yet popular method for

classification. The classifier assumes that each feature from the
set of features F is independent given the class of the document,
or its interestingness. Using Bayes' rule and the independence
assumption, we find:

I(d) = P(Int F(d)) P(Int)ff P(f(d) Int)
P(F(d)) (1 1)

The probabilities can be estimated by maintaining statistics
over feature values using kernel estimators [39].

B. Non-incremental classifiers
We evaluate three classifiers that are robust against irrelevant

features, but are not incrementally updateable, so these classifiers
are trained on a sliding window of documents. Unaltered, for the
classifiers to be continually trained, all the documents' features
and their taggings would have to be stored, and each classifier
would have to be rebuilt each time a document is processed, mak-
ing this approach infeasible.

Since recent articles are more useful in predicting interesting-
ness than older ones, we build windowing classifiers such that the
classifiers are trained on only the last M interesting documents
and the last N uninteresting documents. And the classifiers are
rebuilt on an increasing interval schedule, like the compilation
schedule for the language models used in anomaly detection. In
our experiments, the maximum number of documents in between
rebuilds of the classifier is 300 documents, and the maximum
numbers of positive and negative documents in a window are
both 500 documents. The interval growth rate is two documents.
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In this windowing approach, we first evaluate the C4.5 deci-
sion tree, built by the J48 algorithm [40]. A tree is generated us-
ing the information gain of each feature, with features with high
information gain at the top of the tree and features with low in-
formation gain at the bottom of the tree. The tree is then pruned to
remove branches that have low confidence in their predictive
abilities; making it robust against irrelevant features.

The second classifier uses logistic regression, which models
the posterior probability of interestingness as a logistic function
on a linear combination of features:

_Eff(d)
I(d) = P(Int F(d)) = y/I+ e fEF (12)

A similar approach is taken in [20] to combine multiple ranking
methods. A quasi-Newton method and ridge estimators are used
to search for optimal values for )f [41].

In our experiments, we find that logistic regression is more ac-
curate than C4.5 under the windowing scheme, so we evaluate
logistic regression with bagging [42]. Bagging mitigates the in-
stability of learning methods by building an ensemble of classifi-
ers trained on randomly sampled instances from the training data.
In our experiments, we build 100 ensemble classifiers.

C. Tix
We modify a method used to address concept drift, called

Temporal Inductive Transfer, or Tix [43]. For every M articles
processed, a new classifier is built using a base induction algo-
rithm. The input feature vector consists of the values generated by
the feature extractors along with P additional binary features. The
P features are generated by predictions that the P previous classi-
fiers would have made for the current article. To bootstrap the Tix
process, the first M articles (articles in the first interval) are proc-
essed by a classifier that is continually rebuilt as new documents
are read. After the first interval, the regular Tix procedure begins.
In our experiments, we use logistic regression as our base induc-
tion algorithm, P = 128 classifiers, and M= 1000 articles.

D. Linear correlator
We also evaluate a linear correlator classifier that uses the cor-

relation between a feature and interestingness. Intuitively, if a
feature is highly correlated with interestingness, it should be
weighted more in classifying the document. Unfortunately, it is
assumed that each feature is independent, ignoring the possibility
that two features that perform poorly alone in predicting interest-
ingness may perform well when combined together [44].
As each document is processed, we incrementally compute the

Pearson's correlation corrf of each feature f with interestingness.
The classifier calculates an iScore as follows, weighting each
feature with its interestingness correlation:

_fcorrfcY7(f(d)) 1
I(d) Zfcorrf o7(f(d)) e a1(f(d)-tf) (13)

where G(J(d)) is the sigmoid function. Because each feature value
is a real number, not necessarily bounded between 0 and 1 and
the final iScore value is a real number between 0 and 1, the sig-
moid function is used to squeeze J(d) to such a value.

The parameter tf is the threshold of the sigmoid function. IfJ(d)
is less than tf, the sigmoid function approaches 0. ForJ(fd) greater
than tf, the sigmoid function approaches 1. We assume that fea-
ture values belong to two different normal distributions, one for
interesting articles and one for uninteresting articles. We incre-

mentally maintain the averages and standard deviations for both
distributions. If the feature is directly correlated to interesting-
ness, the average feature value of interesting articles is greater
than that of uninteresting articles. We compute the predicted true
positive and true negative rates, given the cumulative distribution
functions of the two distributions, for any threshold for a feature.
And so for each threshold (according to some granularity) be-
tween the two averages, we compute a utility measure, and select
the threshold with the greatest utility. In our experiments, we use
TREC's TI 1 SU for the utility measure. In the case where there
are ties in utility, the threshold closest to the mid-point between
the averages of feature values of interesting and uninteresting
articles is selected. For features inversely correlated to interest-
ingness, the slope of the sigmoid function is negated and the
computations for the accuracy rates are adjusted accordingly.

The parameter af is the slope of the sigmoid function, which
determines how step-like the sigmoid function is. If the lone fea-
ture is able to predict interestingness by simply thresholding, the
sigmoid function should be more step-like and it should generate
0's and l's with clear certainty. On the other hand, if the feature
is poor at predicting interestingness, the feature should be less
step-like, generating more ambiguous scores. And so we use the
threshold's utility measure, which is proportional to the feature's
predictive power, for the slope.

VI. ADAPTIVE THRESHOLDING
After the overall classifier has generated an iScore, the iScore

is thresholded to classify the document's interestingness. Instead
of using a static threshold, we dynamically adjust the threshold in
a similar fashion as the threshold computation for the linear corre-
lator, with a few modifications. Because iScores are real numbers
bounded between 0 and 1, we can evaluate the efficacy of every
threshold between 0 and 1 in increments of 0.01 and do not have
to assume that interesting and uninteresting articles are normally
distributed. And in the case of ties between the utility measures,
we select the threshold that has deviated least from the previous
threshold computed for the last document. The utility measures
we evaluate are T 1 SU and F-measure ff, where /= 0.5.

VII. EXPERIMENTAL RESULTS
iScore is implemented with an assortment of tools in Java. The

system pipeline is implemented with the IBM UIMA framework
[45]. LingPipe [46] is used for building language models and
related classifiers. OpenNLP [47] is used for sentence detection.
Other classifiers are from Weka [48].
We evaluate iScore against two data sets. The first data set is a

collection of 35,256 news articles from all Yahoo! News RSS
feeds, collected between June and August 2006. The classifica-
tion task is to identify which articles come from which RSS feed.
RSS feeds considered for labeling are feeds of the form: "Top
Stories <category>", "Most Viewed <category>", "Most
Emailed <category>", and "Most Highly Rated <category>."
Because user evaluation is difficult to collect and such data is
often sparse, the Yahoo! news articles and their source feeds are
used for their resemblance to user labeled articles. For example,
RSS feeds such as "Most Viewed Technology" is a good proxy of
what the most interesting articles are for technologists. Other
categories, such as "Top Stories Politics," are a collection of news
stories that the Yahoo! political news editors deem to be of inter-
est to their audience, so the feed also would serve well as a proxy
for interestingness.

The other data set comes from the TREC 11 adaptive filter task,
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which uses the Reuters RCV1 corpus and a set of assessor manual
taggings for 50 topics, such as "Economic Espionage." The cor-
pus is a collection of 723,432 news articles from 1996 to 1997.
Although the TREC adaptive filter work addresses topic rele-
vancy and not necessarily interestingness, the task is done in a
similar online and adaptive fashion as in iScore, and the topics
may be reasonable proxies for a set of users.
We use precision, recall, and the fi measure, where 3 = 0.5,

which weights precision more than recall, for system evaluation.
TREC lI's Ti 1 SU is also used for comparing the performance of
iScore with the work done in TREC I 1:

TI 1SU 2 * max(T1 INU,0.5) -1

TI INU 2*# Int Articles Retr -# Unint Articles Retr (14)
2x# Interesting Articles

For each data set, we use two different utility measures for
guiding the thresholding. For the Yahoo! RSS articles, fi works
better than T 1 SU. And we find that T 1 SU works better for the
TREC data thanf,8
A. Feature analysis

Fig. 2 shows the correlation of the features with interestingness
in each of the RSS feeds. For most feeds, the topic relevancy and
source reputation features are significantly directly correlated
with interestingness. Other features, such as writing style, speech
events, anomaly detection, and subjectivity have varying correla-
tion magnitudes and directions with interestingness, depending on
the RSS feed. The RSS feeds capture a variety of criterions that
users may use when evaluating the interestingness of an article.
On the other hand, Fig. 3 shows that the topic relevancy and

source reputation scores are the only features correlated with rele-
vancy in the adaptive filter task. As expected, the Rocchio variant
is the most correlated feature since it was the best performing
filter in TRECi 1. Although the figure shows that the adaptive
filter task captures topic relevancy well, topic relevancy is only a
prerequisite for interestingness and is not sufficient for an article
to be interesting. The TREC11 taggings and articles do not cap-
ture other aspects of interestingness well.

B. Overall performance
For the Yahoo! RSS articles, we evaluate the performance of

each overall classifier against several well known topic relevancy
classifiers: Rocchio, the Rocchio variant, and the 6-gram charac-
ter language modelling classifier. Each classifier is coupled with
the adaptive thresholding mechanism, usingffas the utility met-

ric. Fig. 4 shows the overall performance of the iScore classifiers
compared to the baseline classifiers. The averages across RSS
feeds, of precision, recall, andffare plotted in the graph. iScore
with nafve Bayes outperforms the best baseline classifier (the
language modelling classifier) by 21% in terms off,. iScore with
the linear correlator, logistic regression, and logistic regression
with bagging also perform as well as most of the baseline classi-
fiers. iScore classifiers using Tix and the decision tree under the
windowing scheme in iScore perform the worse. However, the
decision tree yields high recall at the cost of precision.

Although nafve Bayes in iScore outperforms all the other clas-
sifiers used in iScore, it has a slight advantage. Nafve Bayes can
be incrementally updated quickly. The other classifiers can not be
updated as every new document is processed due to computa-
tional and storage costs. The windowed classifiers have to operate
over a sliding window of data items and are rebuilt at increasing
intervals. Consequently, the windowed classifiers are trained with
less data and are not necessarily up-to-date with the information
about the last document processed.

Fig. 5 shows the performance of iScore using nafve Bayes over
each of the individual feeds along with the number of articles in
each feed. The feed with the worse results is the "Highest Rated
Travel" feed due to the low number of articles in the feed. How-
ever, there are feeds that performed poorly despite the high num-
ber of articles in those feeds. Feeds, such as "Highest Rated" con-
tain a variety of articles from different topics, so the topic rele-
vancy measures, which are the most highly correlated features
with interestingness overall, do not work well for these feeds.

Since iScore uses some of the methods designed for the TREC
task and topic relevancy is a prerequisite for interestingness, we
compare the iScore classifiers (coupled with the adaptive thresh-
older optimized for TI 1 SU) with the best filters from each par-
ticipating group in TREC 11 in Fig. 6. Although iScore did not
perform as well as the best filter, iScore with the linear correlator
did perform generally well compared with most of the other fil-
ters. The next best iScore classifier is the nafve Bayesian classi-
fier, which is consistent with the Yahoo! data set. Logistic regres-
sion, logistic regression with bagging, Tix, and C4.5 yield the
worst precision andfp score but high recall.

C. Performance over time Periods
Fig. 7 shows the performance of each classifier over different

time periods using the Yahoo! RSS articles. Each time period
contains 5000 articles. The best classifier used for iScore is the
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Fig. 4. Overall performance of classifiers over the Yahoo! RSS articles. The
iScore classifiers are outlined.

naive Bayesian classifier, outperforming the best baseline classi-
fier (the language modelling classifier) by 24.3% on average.
iScore using the nafve Bayesian classifier only performs worse
than the baseline classifiers in the first time period. Because iS-
core has three layers of learning that must be done (i.e., the fea-
ture extractors, the overall classifier, and the adaptive threshold-
ing); whereas, the baseline classifiers only have two layers (i.e.,
the classifier itself and the adaptive thresholding), iScore per-
forms poorly at first due to propagation error among the layers.
The other iScore classifiers perform generally better than the
baseline classifiers with the exception of the decision tree, which
fails to improve as more documents are processed.

The dip in performance in the sixth time period by most classi-
fiers is due to concept drift introduced by a pause in the collection
of new articles. Logistic regression and logistic regression with
bagging are the most affected by the drift. Also, Tix, which is
intended to address concept drift, is interestingly also affected by
the pause in data collection.
We also compare the TI 1 SU performance of iScore with the

best filters from TREC11 over time in Fig. 8. Each time interval
is a month's worth of articles. As in the overall performance
analysis of iScore, logistic regression, logistic regression with
bagging, Tix, and the decision tree perform poorly; whereas, na-
ive Bayes and the linear correlator perform well. In the beginning
periods, naive Bayes performs poorly compared to the TREC
filters and the linear correlator, but in the latter periods, it outper-
forms them. The lack of overall improvement in Fig. 6 by iScore
F-Beta Number of Articles
0.7 * -ea3500

0.6 zubrorils3000

Or1 500

Categories

Fig. 5. Performance of iScore (using Naive Bayes) in individual categories
along with the number of articles in each category.
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Fig. 6. Overall performance of classifiers over the TREC articles. The iScore
classifiers are outlined.

over the TREC filters and the slow increase in performance in
Fig. 8 are attributed to the additional learning layers in iScore.
Also the multitude of useless features for the TREC task, as
shown in Fig. 3, is a contributing factor since iScore must spend
more time learning which features are irrelevant. These problems
can be addressed with more training, but because there are few
relevant documents for each TREC topic distributed sparsely
across the entire collection (proportionally much less than in the
Yahoo! collection), iScore cannot immediately learn enough to
outperform the other classifiers until it has seen more articles.

VIII. CONCLUSION
Unlike other personalized news recommendation systems, iS-

core tackles what makes an article interesting, showing that a
single feature is not sufficient. Through the combination of sev-
eral features using a naive Bayesian classifier or a linear correla-
tor, we are able to outperform most popular IR techniques in
identifying interesting articles from Yahoo! RSS feeds by 21%
overall and by 24.3% on average over multiple time periods. Al-
though iScore is not specialized for retrieving articles relevant to
specific topics, compared against the best filters from the
TREC 11 adaptive filter task, iScore performs generally well and
can outperform with sufficient training.
We also show that corpora, such as TREC11, do not capture

interestingness well. Such corpora only capture topic relevancy,
which is only a prerequisite for interestingness. To further ad-
vance personalized news recommendation research, we call for
large corpora that reflect a variety of the characteristics of inter-
esting articles for different users.

There is room for significant improvement for personalized
news recommendations systems with few users. More news arti-
cles from the Yahoo! RSS feeds are being collected, so that we
can evaluate iScore over a large corpus (greater than 100,000
articles). Additionally, user taggings of articles done by volun-
teers using a web browser extension are being collected for fur-
ther study. Also more experiments will have to be done to find
optimal parameter values for the feature extractors and classifiers.
Further work will also be done to address the poor results for
classifying articles from general categories, such as "Highest
Rated." We believe that further refinement of features other than
topic relevancy may yield performance improvements for these
categories. Also we believe that using named entities as well as
relationships among entities can improve the accuracy of topic
relevancy scoring and anomaly detection.
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Fig. 7. Performance of classifiers over time periods over the Yahoo! RSS
articles. Each time period contains 5000 articles.
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