

The Image Stack Stream Model, Querying, and Architecture

 Alfonso F. Cárdenas Raymond K. Pon Bassam S. Islam

Computer Science Department, University of California at Los Angeles

3731 Boelter Hall, UCLA

Los Angeles, California

{cardenas, rpon, bassam}@cs.ucla.edu

Abstract

Rising volumes of multimedia are being gathered with the

increasing deployment of sensors. We present the Image

Stack stream model/view of data for querying and

visualizing the streaming data. This view is independent of

the presence of a DBMS, since more sensors will capture

data on a real-time basis. We outline requirements for

modeling and visualizing streaming multimedia data with

motivating queries. We present the Image Stack data model,

a high-level query language for the model, and a system

architecture and design to support these requirements. We

provide highlights of a prototype implementation in Java

and Java Data Objects, bypassing the use of a DBMS as

permanent storage.

1. Introduction

Growing types and volumes of multimedia data

(alphanumeric, image, sound, and video) are being captured

by increasing deployment of sensors (environmental,

geophysical, medical, etc). We address the challenge of

querying and visualizing of information from multiple

streams of different but related types of data, focusing on

the access and presentation of data through time. Recent

work by others has been reported on video indexing and

accessing by content and visual languages [1]-[2].

However, it has generally focused on viewing individual

video streams and not on the multiple heterogeneous

streams that we are addressing. Furthermore, because much

of the expected data streams are multidimensional, using

existing streaming data management technology to answer

spatio-temporal queries over multidimensional real-time

and archived data is difficult. An example of such a query

is:

“Display the locations of intersections of the UCLA

boundaries with Westwood Blvd and Sunset Blvd

where the poison fume level exceeds value Y now.”

 A stream is an ordered sequence of frames or values. A

frame could be an image, a photograph, a frame in a video

stream, a text report, or an alphanumeric record changing

through time. Current DBMS’s (relational or object

DBMS’s) deal well with alphanumeric record type

structures once they are stored and loaded into a database.

Unfortunately, it is impractical to store in a DBMS the

voluminous data that is arriving rapidly from many sensors.

There has been research regarding alphanumeric data

Figure 1: Stream of two Image Stacks.

stream processing. The Cougar project [3] manages data

from sensor database systems by using abstract data type

functions to represent sensor devices. The NiagraCQ

project [4] has focused on retrieving XML data, querying,

and monitoring them for some interesting change, the

optimization of queries by grouping similar queries

together, and on optimization based on the rate of arrival of

data items. The STREAM project [5] has developed a

prototype of a data stream management system with

support for typical relational DBMS’s. The TinyDB project

[6] has developed continuously adaptive continuous query

techniques, in-sensor-network aggregation of data, and

visualizations for sensor data. Like the STREAM project,

the TelegraphCQ project [7] has also developed a general

system to process continuous queries over data streams.

The Aurora Project [8] has focused on optimizations for

real-time data stream processing.

In contrast to other streaming data management projects

and the advances introduced in [9]-[10], we make the

following advances with the Image Stack model:

• A high-level query language enabling visualizing and

querying historical data with real-time data.

• The ability to query massive multi-dimensional data

that arrive from a data stream.

• Language semantics allowing querying of absolute and

relative points in time of a data stream, encapsulating

historical and real-time data as a single continuum.

Like ours, prior projects have a query language for

querying streaming data. NiagaraCQ’s language is based on

XML; whereas, the other projects are based on SQL. We

present a query language, isOQL, based on ODMG OQL

[11], intended for use upon data streams. Borrowing

notions such as time windows from otherdata stream

management projects, isOQL also provides for visualizing

and querying historical data.

Other systems have focused on querying simple tuples

from continuous streams while the Image Stack focuses on

querying massive multidimensional streaming data. We

provide an architecture for processing, querying, and

visualizing multidimensional multimedia data. Being a data

model for high-level querying and visualizing streaming

and archived data, the Image Stack has not focused on

optimizations for streaming alphanumeric data, but can

leverage existing stream processing technologies to take

advantage of such optimizations.

Many of the mentioned projects have focused on

managing streaming real-time data along with some stored

relational data, but have treated historical data as a separate

entity. The semantics of CQL [12] and similar stream-based

languages are based on querying data from a real-time

stream and treat historical data as a different entity (i.e., a

separate table). However, we argue that this approach is not

intuitive. For example, from a user’s perspective, current

smog data and smog data from 10 years ago are both

instances of smog data, and so the two should not be

differentiated. Sliding window semantics of existing

stream-based languages may provide some historical data

within the same stream being queried in real-time, but data

that is available before the query has been issued or falls

outside the sliding window of the query is not available for

querying. Only the Aurora project has addressed this issue

by introducing connection points to store and process

historical along with streaming data. In [7], CACQ

encapsulates historical and real-time data as a single entity

to support disconnected operation, allowing users to

register queries and return intermittently to retrieve the

latest answers, by applying old data to new queries and then

new data to old queries, when new data becomes available.

isOQL takes a similar approach, but unlike CACQ, isOQL

provides for the explicit specification of an absolute

historical point in time in a data stream, in addition to the

current time and points relative to the current time.

We have proposed the Image Stack model/view as an

attractive way to visualize multiple types of data and set up

as a local or user view database to support major types of

multimedia queries. Figure 1 shows an example of the

Image Stack which consists of several planes. Each plane

contains a different type of two-dimensionally encoded data

that are co-registered to the same coordinate system. This

stack is be composed of elements at a point in time from

different data streams. The example also shows how several

data sources from which data at one point in time could be

gathered logically and viewed as planes in the Image Stack.

In many multimedia applications, such as environmental

analysis, the main interest is visualizing the changes and

trends. This leads us to introduce the notion of a stream of

Image Stacks, also illustrated in Figure 1 for a stream with

two stacks showing change through time.

Figure 2 illustrates the basic data model of the Image

Stack. Conceptually, a Stack object contains many Frame

objects, which are simply represented as a two dimensional

grid of Cell objects. For example, each Cell object may

contain a smog value at different locations and be

collectively grouped together with a Frame object. A Stack

object may contain a Frame object that contains smog level

data, a Frame object that contains population density data, a

Frame object that contains temperature data, and other

Frame objects containing other types of data over the same

region. Each of these Frame objects are co-registered so a

Stack object may be represented as a three-dimensional

cube. We later extend this basic data model to support

explicit relationships for all levels of the data model (e.g.,

Figure 2: High-level Image Stack model

stack, frame, or cell) and to support temporal querying..

2. High-Level Queries for Multidimension

Visualization
We have developed a high-level query language, isOQL,

based on ODMG 3.0 OQL for its native object orientation

and encompassing of SQL’s features, including extensions

for operations provided by the Image Stack model.

2.1 Querying Language Grammar

We have used the ODMG OQL as the basis for isOQL,

with the adition of several operators and semantic additions

to support the Image Stack model. We have created a

grammar that is disjoint from the OQL BNF. Our grammar

branches off the OQL BNF at the highest level with the

following rule:

Query := selectExp | newQuery | expr

This rule is the same as the OQL BNF, with the addition

of the newQuery expression:

newQuery := displayExp {OVERLAY displayExp}

displayExp :=DISPLAY displayList newFromClause

 [whereClause]

All of the queries that make use of the visualization

features of the query language start with the DISPLAY

keyword. This allows us to keep queries that use

visualization operations separate from traditional OQL

SELECT statements. The OVERLAY keyword allows two

or more visualization queries to be superimposed on one

another in a single display screen.

displayList :=displayAttribute {, displayAttribute}

displayAttribute := (displayFunction)

After the DISPLAY statement, the display function

follows enclosed in parenthesis. We currently have three

classes of display functions: plot functions, cine functions,

and contour functions.

displayFunction := plotFunctions | cineFunctions

 | contourFunction

The plot functions, defined below, simply plot the cells

of the image in a user-selectable color.

plotFunctions := PLOT_VALUE expr [IN color]

 | PLOT_POINT plotLocation [IN color]

| PLOT_CHANGE expr, expr chageColorExpr

If the user does not select a color, the system will select

a color from a pool of default colors. The PLOT_VALUE

function plots the value of the current cell value in a

gradient color that corresponds to the value of the cell. The

PLOT_POINT function uses the LOCATION keyword to

plot the current cell that is being examined. The

PLOT_CHANGE function takes two cell values as inputs

(two cells from the same image at two different time

periods), and plots the increases in one color gradient, the

decreases in another color gradient, and optionally plots no

change in yet another color.

cineFunctions := CINE expr {, expr}

 | CINE_CHANGE expr {, expr} changeColorExpr

 | CINE_PERCENT_CHANGE expr {, expr}

 changeColorExpr

changeColorExpr := INCREASES IN color,

DECREASES IN color [, NOCHANGE IN color]

All cine functions output a number of images in an

animation. These images are generally the same images at

different points of time. These animations help visualize the

change of a certain parameter over the same area at

different points of time. The CINE function takes a number

of images as input, and simply displays a slideshow of the

images. The CINE_CHANGE function takes as input a

number of images (of the same area), and shows an

animation of the images, displaying the increases between

images in one color gradient, and decreases in another color

gradient. The CINE_PERCENT_CHANGE is identical to

the CINE_CHANGE function, except that the change

between images is normalized to a percentage.

contourFuction := CONTOUR_VALUE expr EVERY

 expr IN color

The COUNTOUR_VALUE function plots contour

lines on the image, at a user-definable numeric interval,

with a user-definable color.

newFromClause := FROM newInteratorDef

{,newIiteratorDef}

newIteratorDef := iteratorDef | streamDef

Our high-level language queries also include extensions

in the traditional FROM clause to better handle stream and

image data. The new addition is the streamDef:

streamed := expr[[windowExpr]] AS Alias

The streamDef rule allows us to select multiple images

in the FROM clause, whether they contain different kinds

of data, or the same data at different intervals of time. For

the latter case, we have several options for selecting the

time periods for the desired images:

windowExpr := windowInstance | windowInterval

 | windowIntervalFreq

To select a single snapshot of image data at a certain

point in time, we would simply use the windowInstance

rule:

windowInstance := timeExpr

To select all of the images in a time interval, we would

use the windowInterval rule:

windowInterval := timeExpr TO timeExpr

If we wish to select images in a time interval at certain

periodic intervals (e.g., images between 2000 and 2002,

taken every two months), we would use the

windowIntervalFreq rule:

windowIntervalFreq :=timeExpr TO timeExpr EVERY

unitExpr

The following rule defines the allowable expressions of

time (e.g., January 2002, NOW, or NOW – 10 years):

timeExpr := NOW | NOW – unitExpr | NOW + unitExpr |

 timeLiteral

We use the keyword NOW to indicate the most current

snapshot of the image data. We also allow mathematical

expression to specify a time period relative to NOW. This

mathematical expression can reference events in the past

and can reference events in the future that may be

extrapolated from current data through processes such as

regression. Furthermore, we allow the specification of a

timeLiteral (e.g., “January 1, 2001”) to indicate an absolute

point in time, as opposed to a relative point in time. Further

research is being conducted into defining bounds on how

stale the NOW data is allowed to be, and how often the

NOW data needs to be refreshed relative to the frequency

of change of the data for it to remain “fresh.”

2.2 Example Queries

We present several motivating queries, which are typical of

the type of major decision-making queries that are not

automated today by any generalized DBMS, Geographical

Information systems, or visualization system. We show the

isOQL incarnations for four queries. The results of the

queries would be sent to an imaging or visualization system

for display, which are beyond the scope of this paper.

Example 1: Display the locations of intersections of UCLA

boundaries with Westwood Blvd and Sunset Blvd where the

poison fume level exceeds value Y now.

DISPLAY (PLOT_POINT LOCATION)

FROM Road AS R, School_Boundaries AS SB,

Poison_Levels_Plane_Stream[NOW] AS PL

WHERE SB.Name LIKE “UCLA” AND

 (R.Name LIKE “Westwood Blvd” OR

 R.Name LIKE “Sunset Blvd”) AND

 (SB INTERSECTS LOCATION) AND

 (R INTERSECTS LOCATION) AND

 PL.Cell_Value > Y

In the FROM clause, we are examining Road and

School_Boundaries which are extents containing objects

representing information about roads and school

boundaries. Poison_Levels_Plane_Stream is a stream of

planes, or a plane stream, as defined in the previous section,

indicating time-varying poison levels over a geographic

area. This is simply an array of Planes, indexed by time and

where each instance of a Plane is a geographical map

indicating poison levels. The LOCATION keyword

indicates the current location of the query execution. The

LOCATION construct is analogous to the current tuple

being processed in relational DBMS’s. The NOW keyword

can be used as an index in a stream, retrieving the most

current plane from the stream. In the preprocessing phase of

the query, the NOW symbol is replaced by a numerical

index of the most recent plane.

Example 2: For locations with smog levels over X, show

elevation with contour lines every 25 feet for places where

there are school districts, showing smog level in purple.

DISPLAY (PLOT_VALUE S.Cell_Value IN

PURPLE), (CONTOUR E.Cell_Value EVERY

25 IN BLACK)

FROM Smog_Plane_Stream[NOW] AS S,

School_Districts_Plane AS SD,

Elevation_Plane AS E

WHERE SD.Cell_Value <> NULL AND

S.Cell_Value > X

The DISPLAY command merely displays the result of

the query on the viewing device. The PLOT_VALUE

function paints the current location of the query execution

with a shade of the specified color related to the Cell_Value

of the input parameter. The CONTOUR function draws

contour lines given the color of the line, the value to

contour over, and the distance between contour lines.

Example 3: Compare the current smog level to a year

earlier showing clearly the differences in red for higher

smog levels and in blue for lower smog levels.

We can answer the above query by OVERLAYing the

results of two queries, utilizing the OVERLAY operation,

but it is expected that the above query form would be

common and to rewrite such a complex query for different

parameters and different streams would be tedious; thus, we

use the display function, PLOT_CHANGE as the following

isOQL query illustrates:

DISPLAY (PLOT_CHANGE S1.Cell_Value,

S2.Cell_Value INCREASES IN RED,

DECREASES IN BLUE)

FROM Smog_Plane_Stream[NOW] AS S1,

Smog_Plane_Stream[NOW–1 Year] AS S2

Example 4: Compare smog level to two, four, six, eight and

ten years earlier and show a stream of images clearly

indicating for each image the differences in red for higher

smog levels and in blue for lower smog levels compared to

the prior period; provide also the percentage change in

population density and ethnic mix versus the prior period.

DISPLAY (CINE_CHANGE S INCREASES IN

RED, DECREASES IN BLUE), (CINE E)

(CINE_PERCENT_CHANGE P INCREASES

IN GREEN, DECREASES IN PURPLE),

FROM City_Areas AS CA

Smog_Plane_Stream[NOW-10 Year TO NOW

EVERY 2 Year] AS S,

…

WHERE CA.name = ‘East Los Angeles’ AND CA

CONTAINS LOCATION

We could have explicitly written conditions for

displaying increases and decreases; however, we chose

instead to simplify the queries by using CINE_CHANGE,

CINE_PERCENT_CHANGE, and CINE. In this query,

we see that from the base streams, we can select a desired

substream for any desired time interval and frequency.

3. System Architecture and Design

3.1 Heterogeneous Data Sources

Figure 4 shows the overall system architecture that will

incorporate heterogeneous data sources, real-time and

offline processing of data, and the Stack view and querying.

The Stream Processor serves as the entry point for stream

data into the system. Heterogeneous data sources are

handled by special sub-processors that are spawned from

the stream processor and are able to handle the extraction of

data from each type of source. The drivers for extracting

each of the possible input data stream type is stored in a

device database. The heterogeneous tuples are then

forwarded from the sub-processors to the main Stream

Processor, which would then forward the data for further

processing. This procedure homogenizes the heterogeneous

data into a single framework, so it can be easily

manipulated by the rest of the system.

The Stream Processor, the real-time, and offline

processing modules are independent modules. This

architecture is very much similar to the mediator

architecture originally introduced in [24]. This allows for

extensibility and flexibility. If a new data stream source is

made available, a new source-specific module can be added

to make the data source available to users with little

modification to the rest of the system. Furthermore, the

source-specific modules hide much of the source-specific

interfaces from the rest of the system, making system

implementation easier and much more modularized. Also, if

new processing techniques are developed, they can be

added to one of the processing modules as a sub-module.

3.2 Offline versus Online Processing

Note that data streams will not necessarily reside in a

conventional DBMS since a majority of sensor data will be

too voluminous and will use the Internet as the primary

means of providing such data. The Stream Processor may

retrieve data continuously real-time, on an ad-hoc basis or

on a predefined schedule.

If a DBMS is available that can support the Image Stack

model, then its role is shown as the path on the bottom in

Figure 4. Data is captured by the Stream Processor and

stored temporarily in a buffer. Once the data is stored in the

buffer, the data may be compressed, decompressed,

calibrated, or co-registered in offline processes via the

Offline Processor. The results of the offline processing are

stored into the Stack Database so that when the stack view

Figure 3: Possible layering of languages.

Figure 4: System architecture.

is generated later, such processing need not to be done later.

The stream processor, when used in the offline path,

will selectively determine which data items should be

stored in the DBMS since the data source may provide an

infinite stream of data, which cannot all be stored. This

selection of data may be based on frequency-based

sampling or criteria-based sampling defined by the user or

on an on-demand basis, which is an approach taken in the

TinyDB project [6]. The selection of data may also be

based on identifying which streams have particular

characteristics that are of interest, employing methods such

as the use of the Hamming Norm [15] or clustering

techniques [16]. Other sampling and caching techniques

and criteria that may be adapted for the system are

discussed in [17] to [20]. An approximation of the data

stream or summary data structure may be also employed,

such as wavelets [21][22], histograms [23], or sliding

windows to reduce the amount of data stored.

If no DBMS is involved, then we can take the streams

directly through a real-time stream processing phase via the

Real-Time Processor and then provide the Image Stack

stream view. Unlike in offline processing, in the real-time

processing, the streams are co-registered with possibly less

accuracy, depending on the availability of fast algorithms

and hardware, which may employ heuristics or

approximations and is beyond the scope of our work.

By separating the processing of data into two paths:

real-time and offline, data can be processed and viewed on

a real-time basis or may be viewed later. Thee data flow

path is split into these two paths because we may have

different algorithms in processing real-time data and data to

be stored in the DBMS in regards to performance, speed,

and accuracy.

3.3 Stack View Management and Querying

The Image Stack View is the main interface for the user to

view and access the stack data. Queries and data

manipulation in the Image Stack View takes place via the

Query Engine module. A user issues an isOQL query on the

data in the Image Stack View, which would send the query

to the Query Engine. Figure 3 shows the layering of the

database languages made use by the system. At the top

layer is isOQL, which is used to interact with the Image

Stack model. Below isOQL are extensions needed to the

existing DBMS to handle multi-dimensional data. Beneath

the extension layer are the existing database languages,

such as JDOQL. The language layering allows isOQL and

the Image Stack view to be used in a variety of

environments. The high level query language, isOQL, is

used so that it would be easier for the user of the system to

query it, hiding much of how the Image Stack model is

implemented in the DBMS. isOQL incorporates the real-

time and DBMS aspects of the system.

The Query Engine determines whether the data

necessary to answer the query is present in the Image Stack

View, or if more data would need to be loaded from the

Stack Database, or if real-time data needs to be requested

from the Stream Processor. If necessary, it sends commands

(shown in dashed arrows in Figure 4) to the Stack Database

to load the data into the Image Stack View and executes the

query there. If the query requires real-time data, the Query

Engine sends a request for data to the Stream Processor and

sends the data to the Image Stack View via the Real-Time

Processor. It is possible that the user would wish to use the

output of a query as one of the inputs to another. Since the

results of all queries are initially stored in the Image Stack

View, the user may store the query results in the Stack

Database.

4. System and Data Model Implementation

Figure 5 shows the class structure diagram used in Java to

implement the above functionality. A Stack, Frame, and a

Figure 5: Class architecture for JDO implementation.

Cell are subclasses of special super-class, called the

Attribute-Relationship Object. An Attribute-Relationship

Object has a dynamic list of Attribute objects. Since the

Stack, Frame, and Cell classes are Attribute-Relationship

Objects, they have a list of Attributes, so any number of

user-defined attributes can be added to the whole Stack,

Frame or single Pixel, providing storage of data at all

levels.

We have implemented the data model in Java Data

Objects (JDO) [26], making use of the OO-DBMS

FastObjects t7 [27]. We have a preliminary implementation

of isOQL built on top of JDOQL, which is demonstrated at

[13], using land surface temperature data from the MODIS

instrument [14] aboard the Terra satellite, which is already

co-registered. Future work will adapt advanced co-

registration methods such as [25] if co-registration data is

not available.

5. Conclusion and Future Work

We are pursuing further development of the Image Stack

view along with streams of stacks over a multitude of

multimedia streams. The intent is to provide such a view

over data whether or not a DBMS is used at all. We

highlight an isOQL engine and Image Stack system without

use of a DBMS since many of the data streams broadcasted

via the Internet will not reside in a DBMS.

Acknowledgement

This work is partially supported by National Science

Foundation Grant # IIS 0140384, “Multimedia Stream

Modeling, Relationships and Querying.”

References
[1] Flickner M (1995) Query by Image and Video Content:

The QBIC System. Computer 28(9)

[2] Chang S, Chen W (1997) VideoQ: An Automated Content

Based Video Search System Using Visual Cues. ACM

Multimedia

[3] Bonnet P, et al (2001) Towards Sensor Database Systems.

2nd Int’l Conference on Mobile Data Management, Hong

Kong.

[4] Chen J, et al (2000) NiagaraCQ: A Scalable Continuous

Query System for Internet Databases. SIGMOD 2000: 379-

390

[5] Motwani R, et al (2003) Query Processing, Resource

Management, and Approximation and in a Data Stream

Management System. CIDR 2003, Pacific Grove,

California: 245-256

[6] Madden S R, et al (2003) The Design of an Acquisitional

Query Processor for Sensor Networks. SIGMOD, San

Diego, CA

[7] Chandrasekaran S, et al (2003) TelegraphCQ: Continuous

Dataflow Processing for an Uncertain World. CIDR 2003

[8] Carney D, et al (2002) Monitoring Streams - A New Class

of Data Management Applications. VLDB Conference,

Hong Kong

[9] Cárdenas A F and Michael P A (2002) Image Stack Model

of Multimedia Data. DMS 2002, San Francisco, CA.

[10] Cárdenas, A F, et al (2003) Image Stack Viewing and

Access. Journal of Visual Language and Computing

14: 421-441

[11] Cattell R G (2000) The Object Database Standard: ODMG

Release 3.0, Morgan Kaufmann, San Francisco, CA

[12] Arasu A, Babu S, Widom J (2003) An Abstract Semantics

and Concrete Language for Continuous Queries over

Streams Relations. International Conference on Data Base

Programming Languages

[13] MMSS Group (2003) Geophysical TimeLine [Online]

Available: http://www.mmss.cs.ucla.edu/GeoHome.htm

[14] NASA (2003) MODIS Web [Online] Available:

http://modis.gsfc.nasa.gov/

[15] Cormode G, et al (2003) Comparing Data Streams Using

Hamming Norms (How to Zero In). Transactions on

Knowledge and Data Engineering 15(3): 529-540

[16] Guha S, et al (2003) Clustering Data Streams: Theory

Practice. Transactions on Knowledge and Data Engineering

15(3): 515-528

[17] Cho J, Garcia-Molina H (2000) Synchronizing a database

to Improve Freshness. SIGMOD

[18] Cho J, Ntoulas A (2002) Effective Change Detection using

Sampling. VLDB Conference, Hong Kong, China

[19] Olston C, Widom J (2002) Best-Effort Cache

Synchronization with Source Cooperation. ACM

SIGMOD, Madison, Wisconsin

[20] Olston C, Jiang J, Widom J (2003) Adaptive Filters for

Continuous Queries over Distributed Data Streams.

SIGMOD, San Diego, California

[21] Gilbert A, et al (2001) Surfing Wavelets on Streams: One-

Pass Summaries for Approximate Aggregate Queries.

VLDB Conference: 79-88

[22] Gilbert A, et al (2003) One-Pass Wavelet Decompositions

of Data Streams. Transactions on Knowledge and Data

Engineering 15(3): 541-554

[23] Guha S, et al (2001) Data Streams Histograms. Symp

Theory of Computing: 471-475

[24] Wiederhold G (1992) Mediators in the Architecture of

Future Information Systems. IEEE Computer: 38-49

[25] Chen Y, et al (2002) Efficient Global Optimization for

Image Registration. IEEE Transactions Knowledge and

Data Engineering 14(1): 79-92

[26] Sun Microsystems (2003) Java Data Objects [Online]

Available: http://access1.sun.com/jdo/

[27] FastObjects (2003) FastObjects t7 [Online] Available:

http://www.fastobjects.com/us/FastObjects_PandS_t7.asp

