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Abstract 

Rising volumes of multimedia are being gathered with the 

increasing deployment of sensors. We present the Image 

Stack stream model/view of data for querying and 

visualizing the streaming data. This view is independent of 

the presence of a DBMS, since more sensors will capture 

data on a real-time basis. We outline requirements for 

modeling and visualizing streaming multimedia data with 

motivating queries. We present the Image Stack data model, 

a high-level query language for the model, and a system 

architecture and design to support these requirements. We 

provide highlights of a prototype implementation in Java 

and Java Data Objects, bypassing the use of a DBMS as 

permanent storage.  

1. Introduction 

Growing types and volumes of multimedia data 

(alphanumeric, image, sound, and video) are being captured 

by increasing deployment of sensors (environmental, 

geophysical, medical, etc). We address the challenge of 

querying and visualizing of information from multiple 

streams of different but related types of data, focusing on 

the access and presentation of data through time. Recent 

work by others has been reported on video indexing and 

accessing by content and visual languages [1]-[2]. 

However, it has generally focused on viewing individual 

video streams and not on the multiple heterogeneous 

streams that we are addressing. Furthermore, because much 

of the expected data streams are multidimensional, using 

existing streaming data management technology to answer 

spatio-temporal queries over multidimensional real-time 

and archived data is difficult. An example of such a query 

is: 

“Display the locations of intersections of the UCLA 

boundaries with Westwood Blvd and Sunset Blvd 

where the poison fume level exceeds value Y now.” 

 A stream is an ordered sequence of frames or values. A 

frame could be an image, a photograph, a frame in a video 

stream, a text report, or an alphanumeric record changing 

through time. Current DBMS’s (relational or object 

DBMS’s) deal well with alphanumeric record type 

structures once they are stored and loaded into a database. 

Unfortunately, it is impractical to store in a DBMS the 

voluminous data that is arriving rapidly from many sensors.  

There has been research regarding alphanumeric data 

 

Figure 1: Stream of two Image Stacks. 



 

stream processing. The Cougar project [3] manages data 

from sensor database systems by using abstract data type 

functions to represent sensor devices. The NiagraCQ 

project [4] has focused on retrieving XML data, querying, 

and monitoring them for some interesting change, the 

optimization of queries by grouping similar queries 

together, and on optimization based on the rate of arrival of 

data items. The STREAM project [5] has developed a 

prototype of a data stream management system with 

support for typical relational DBMS’s. The TinyDB project 

[6] has developed continuously adaptive continuous query 

techniques, in-sensor-network aggregation of data, and 

visualizations for sensor data. Like the STREAM project, 

the TelegraphCQ project [7] has also developed a general 

system to process continuous queries over data streams. 

The Aurora Project [8] has focused on optimizations for 

real-time data stream processing.  

In contrast to other streaming data management projects 

and the advances introduced in [9]-[10], we make the 

following advances with the Image Stack model: 

• A high-level query language enabling visualizing and 

querying historical data with real-time data. 

• The ability to query massive multi-dimensional data 

that arrive from a data stream. 

• Language semantics allowing querying of absolute and 

relative points in time of a data stream, encapsulating 

historical and real-time data as a single continuum. 

Like ours, prior projects have a query language for 

querying streaming data. NiagaraCQ’s language is based on 

XML; whereas, the other projects are based on SQL. We 

present a query language, isOQL, based on ODMG OQL 

[11], intended for use upon data streams. Borrowing 

notions such as time windows from otherdata stream 

management projects, isOQL also provides for visualizing 

and querying historical data.  

Other systems have focused on querying simple tuples 

from continuous streams while the Image Stack focuses on 

querying massive multidimensional streaming data. We 

provide an architecture for processing, querying, and 

visualizing multidimensional multimedia data. Being a data 

model for high-level querying and visualizing streaming 

and archived data, the Image Stack has not focused on 

optimizations for streaming alphanumeric data, but can 

leverage existing stream processing technologies to take 

advantage of such optimizations.  

Many of the mentioned projects have focused on 

managing streaming real-time data along with some stored 

relational data, but have treated historical data as a separate 

entity. The semantics of CQL [12] and similar stream-based 

languages are based on querying data from a real-time 

stream and treat historical data as a different entity (i.e., a 

separate table). However, we argue that this approach is not 

intuitive. For example, from a user’s perspective, current 

smog data and smog data from 10 years ago are both 

instances of smog data, and so the two should not be 

differentiated. Sliding window semantics of existing 

stream-based languages may provide some historical data 

within the same stream being queried in real-time, but data 

that is available before the query has been issued or falls 

outside the sliding window of the query is not available for 

querying. Only the Aurora project has addressed this issue 

by introducing connection points to store and process 

historical along with streaming data. In [7], CACQ 

encapsulates historical and real-time data as a single entity 

to support disconnected operation, allowing users to 

register queries and return intermittently to retrieve the 

latest answers, by applying old data to new queries and then 

new data to old queries, when new data becomes available. 

isOQL takes a similar approach, but unlike CACQ, isOQL 

provides for the explicit specification of an absolute 

historical point in time in a data stream, in addition to the 

current time and points relative to the current time. 

We have proposed the Image Stack model/view as an 

attractive way to visualize multiple types of data and set up 

as a local or user view database to support major types of 

multimedia queries.  Figure 1 shows an example of the 

Image Stack which consists of several planes. Each plane 

contains a different type of two-dimensionally encoded data 

that are co-registered to the same coordinate system. This 

stack is be composed of elements at a point in time from 

different data streams. The example also shows how several 

data sources from which data at one point in time could be 

gathered logically and viewed as planes in the Image Stack. 

In many multimedia applications, such as environmental 

analysis, the main interest is visualizing the changes and 

trends. This leads us to introduce the notion of a stream of 

Image Stacks, also illustrated in Figure 1 for a stream with 

two stacks showing change through time.  

Figure 2 illustrates the basic data model of the Image 

Stack. Conceptually, a Stack object contains many Frame 

objects, which are simply represented as a two dimensional 

grid of Cell objects. For example, each Cell object may 

contain a smog value at different locations and be 

collectively grouped together with a Frame object. A Stack 

object may contain a Frame object that contains smog level 

data, a Frame object that contains population density data, a 

Frame object that contains temperature data, and other 

Frame objects containing other types of data over the same 

region. Each of these Frame objects are co-registered so a 

Stack object may be represented as a three-dimensional 

cube. We later extend this basic data model to support 

explicit relationships for all levels of the data model (e.g., 

 

Figure 2: High-level Image Stack model 



 

stack, frame, or cell) and to support temporal querying.. 

2. High-Level Queries for Multidimension 

Visualization 
We have developed a high-level query language, isOQL, 

based on ODMG 3.0 OQL for its native object orientation 

and encompassing of SQL’s features, including extensions 

for operations provided by the Image Stack model.  

2.1 Querying Language Grammar 

We have used the ODMG OQL as the basis for isOQL, 

with the adition of several operators and semantic additions 

to support the Image Stack model. We have created a 

grammar that is disjoint from the OQL BNF. Our grammar 

branches off the OQL BNF at the highest level with the 

following rule: 

Query := selectExp | newQuery | expr 

This rule is the same as the OQL BNF, with the addition 

of the newQuery expression: 

newQuery := displayExp {OVERLAY displayExp} 

displayExp :=DISPLAY displayList newFromClause

 [whereClause] 

All of the queries that make use of the visualization 

features of the query language start with the DISPLAY 

keyword. This allows us to keep queries that use 

visualization operations separate from traditional OQL 

SELECT statements. The OVERLAY keyword allows two 

or more visualization queries to be superimposed on one 

another in a single display screen. 

displayList :=displayAttribute {, displayAttribute} 

displayAttribute := ( displayFunction ) 

After the DISPLAY statement, the display function 

follows enclosed in parenthesis. We currently have three 

classes of display functions: plot functions, cine functions, 

and contour functions. 

displayFunction := plotFunctions | cineFunctions 

 | contourFunction 

The plot functions, defined below, simply plot the cells 

of the image in a user-selectable color. 

plotFunctions := PLOT_VALUE expr [IN color] 

 | PLOT_POINT plotLocation [IN color] 

| PLOT_CHANGE expr, expr chageColorExpr 

If the user does not select a color, the system will select 

a color from a pool of default colors. The PLOT_VALUE 

function plots the value of the current cell value in a 

gradient color that corresponds to the value of the cell. The 

PLOT_POINT function uses the LOCATION keyword to 

plot the current cell that is being examined. The 

PLOT_CHANGE function takes two cell values as inputs 

(two cells from the same image at two different time 

periods), and plots the increases in one color gradient, the 

decreases in another color gradient, and optionally plots no 

change in yet another color. 

cineFunctions := CINE expr {, expr} 

 | CINE_CHANGE expr {, expr} changeColorExpr 

 | CINE_PERCENT_CHANGE expr {, expr} 

 changeColorExpr 

changeColorExpr  := INCREASES IN color,  

DECREASES IN color [, NOCHANGE IN color] 

All cine functions output a number of images in an 

animation. These images are generally the same images at 

different points of time. These animations help visualize the 

change of a certain parameter over the same area at 

different points of time. The CINE function takes a number 

of images as input, and simply displays a slideshow of the 

images. The CINE_CHANGE function takes as input a 

number of images (of the same area), and shows an 

animation of the images, displaying the increases between 

images in one color gradient, and decreases in another color 

gradient. The CINE_PERCENT_CHANGE is identical to 

the CINE_CHANGE function, except that the change 

between images is normalized to a percentage. 

contourFuction := CONTOUR_VALUE expr EVERY 

 expr IN color 

The COUNTOUR_VALUE function plots contour 

lines on the image, at a user-definable numeric interval, 

with a user-definable color. 

newFromClause := FROM newInteratorDef  

{,newIiteratorDef} 

newIteratorDef := iteratorDef | streamDef 

Our high-level language queries also include extensions 

in the traditional FROM clause to better handle stream and 

image data. The new addition is the streamDef: 

streamed := expr[ [windowExpr] ] AS Alias 

The streamDef rule allows us to select multiple images 

in the FROM clause, whether they contain different kinds 

of data, or the same data at different intervals of time. For 

the latter case, we have several options for selecting the 

time periods for the desired images: 

windowExpr := windowInstance | windowInterval 

 | windowIntervalFreq 

To select a single snapshot of image data at a certain 

point in time, we would simply use the windowInstance 

rule: 

windowInstance := timeExpr 

To select all of the images in a time interval, we would 

use the windowInterval rule: 

windowInterval := timeExpr TO timeExpr 

If we wish to select images in a time interval at certain 

periodic intervals (e.g., images between 2000 and 2002, 

taken every two months), we would use the 

windowIntervalFreq rule: 

windowIntervalFreq :=timeExpr TO timeExpr EVERY 



 

unitExpr 

The following rule defines the allowable expressions of 

time (e.g., January 2002, NOW, or NOW – 10 years): 

timeExpr := NOW | NOW – unitExpr | NOW + unitExpr | 

 timeLiteral 

We use the keyword NOW to indicate the most current 

snapshot of the image data. We also allow mathematical 

expression to specify a time period relative to NOW. This 

mathematical expression can reference events in the past 

and can reference events in the future that may be 

extrapolated from current data through processes such as 

regression. Furthermore, we allow the specification of a 

timeLiteral (e.g., “January 1, 2001”) to indicate an absolute 

point in time, as opposed to a relative point in time. Further 

research is being conducted into defining bounds on how 

stale the NOW data is allowed to be, and how often the 

NOW data needs to be refreshed relative to the frequency 

of change of the data for it to remain “fresh.” 

2.2 Example Queries 

We present several motivating queries, which are typical of 

the type of major decision-making queries that are not 

automated today by any generalized DBMS, Geographical 

Information systems, or visualization system. We show the 

isOQL incarnations for four queries. The results of the 

queries would be sent to an imaging or visualization system 

for display, which are beyond the scope of this paper.  

Example 1: Display the locations of intersections of UCLA 

boundaries with Westwood Blvd and Sunset Blvd where the 

poison fume level exceeds value Y now. 

DISPLAY (PLOT_POINT LOCATION) 

FROM Road AS R, School_Boundaries AS SB, 

Poison_Levels_Plane_Stream[NOW] AS PL 

WHERE SB.Name LIKE “UCLA” AND  

 (R.Name LIKE “Westwood Blvd” OR 

 R.Name LIKE “Sunset Blvd”) AND 

 (SB INTERSECTS LOCATION) AND 

 (R INTERSECTS LOCATION) AND 

 PL.Cell_Value > Y 

In the FROM clause, we are examining Road and 

School_Boundaries which are extents containing objects 

representing information about roads and school 

boundaries. Poison_Levels_Plane_Stream is a stream of 

planes, or a plane stream, as defined in the previous section, 

indicating time-varying poison levels over a geographic 

area. This is simply an array of Planes, indexed by time and 

where each instance of a Plane is a geographical map 

indicating poison levels. The LOCATION keyword 

indicates the current location of the query execution. The 

LOCATION construct is analogous to the current tuple 

being processed in relational DBMS’s. The NOW keyword 

can be used as an index in a stream, retrieving the most 

current plane from the stream. In the preprocessing phase of 

the query, the NOW symbol is replaced by a numerical 

index of the most recent plane.  

Example 2: For locations with smog levels over X, show 

elevation with contour lines every 25 feet for places where 

there are school districts, showing smog level in purple.  

DISPLAY (PLOT_VALUE S.Cell_Value IN 

PURPLE), (CONTOUR E.Cell_Value EVERY 

25 IN BLACK)  

FROM Smog_Plane_Stream[NOW] AS S, 

School_Districts_Plane AS SD,  

Elevation_Plane AS E 

WHERE SD.Cell_Value <> NULL AND 

S.Cell_Value > X  

The DISPLAY command merely displays the result of 

the query on the viewing device. The PLOT_VALUE 

function paints the current location of the query execution 

with a shade of the specified color related to the Cell_Value 

of the input parameter. The CONTOUR function draws 

contour lines given the color of the line, the value to 

contour over, and the distance between contour lines.  

Example 3: Compare the current smog level to a year 

earlier showing clearly the differences in red for higher 

smog levels and in blue for lower smog levels. 

We can answer the above query by OVERLAYing the 

results of two queries, utilizing the OVERLAY operation, 

but it is expected that the above query form would be 

common and to rewrite such a complex query for different 

parameters and different streams would be tedious; thus, we 

use the display function, PLOT_CHANGE as the following 

isOQL query illustrates: 

DISPLAY (PLOT_CHANGE S1.Cell_Value, 

S2.Cell_Value INCREASES IN RED, 

DECREASES IN BLUE) 

FROM Smog_Plane_Stream[NOW] AS S1, 

Smog_Plane_Stream[NOW–1 Year] AS S2 

Example 4: Compare smog level to two, four, six, eight and 

ten years earlier and show a stream of images clearly 

indicating for each image the differences in red for higher 

smog levels and in blue for lower smog levels compared to 

the prior period; provide also the percentage change in 

population density and ethnic mix versus the prior period. 

DISPLAY (CINE_CHANGE S INCREASES IN 

RED, DECREASES IN BLUE), (CINE E) 

(CINE_PERCENT_CHANGE P INCREASES 

IN GREEN, DECREASES IN PURPLE),  

FROM City_Areas AS CA 

Smog_Plane_Stream[NOW-10 Year TO NOW 

EVERY 2 Year] AS S, 

… 

WHERE CA.name = ‘East Los Angeles’ AND CA 

CONTAINS LOCATION  

We could have explicitly written conditions for 

displaying increases and decreases; however, we chose 

instead to simplify the queries by using CINE_CHANGE, 

CINE_PERCENT_CHANGE, and CINE. In this query, 



 

we see that from the base streams, we can select a desired 

substream for any desired time interval and frequency. 

3. System Architecture and Design  

3.1 Heterogeneous Data Sources 

Figure 4 shows the overall system architecture that will 

incorporate heterogeneous data sources, real-time and 

offline processing of data, and the Stack view and querying. 

The Stream Processor serves as the entry point for stream 

data into the system. Heterogeneous data sources are 

handled by special sub-processors that are spawned from 

the stream processor and are able to handle the extraction of 

data from each type of source. The drivers for extracting 

each of the possible input data stream type is stored in a 

device database. The heterogeneous tuples are then 

forwarded from the sub-processors to the main Stream 

Processor, which would then forward the data for further 

processing. This procedure homogenizes the heterogeneous 

data into a single framework, so it can be easily 

manipulated by the rest of the system. 

The Stream Processor, the real-time, and offline 

processing modules are independent modules. This 

architecture is very much similar to the mediator 

architecture originally introduced in [24]. This allows for 

extensibility and flexibility. If a new data stream source is 

made available, a new source-specific module can be added 

to make the data source available to users with little 

modification to the rest of the system. Furthermore, the 

source-specific modules hide much of the source-specific 

interfaces from the rest of the system, making system 

implementation easier and much more modularized. Also, if 

new processing techniques are developed, they can be 

added to one of the processing modules as a sub-module.  

3.2 Offline versus Online Processing 

Note that data streams will not necessarily reside in a 

conventional DBMS since a majority of sensor data will be 

too voluminous and will use the Internet as the primary 

means of providing such data. The Stream Processor may 

retrieve data continuously real-time, on an ad-hoc basis or 

on a predefined schedule. 

If a DBMS is available that can support the Image Stack 

model, then its role is shown as the path on the bottom in 

Figure 4. Data is captured by the Stream Processor and 

stored temporarily in a buffer. Once the data is stored in the 

buffer, the data may be compressed, decompressed, 

calibrated, or co-registered in offline processes via the 

Offline Processor. The results of the offline processing are 

stored into the Stack Database so that when the stack view 

 

Figure 3: Possible layering of languages. 

 

Figure 4: System architecture. 



 

is generated later, such processing need not to be done later.  

The stream processor, when used in the offline path, 

will selectively determine which data items should be 

stored in the DBMS since the data source may provide an 

infinite stream of data, which cannot all be stored. This 

selection of data may be based on frequency-based 

sampling or criteria-based sampling defined by the user or 

on an on-demand basis, which is an approach taken in the 

TinyDB project [6]. The selection of data may also be 

based on identifying which streams have particular 

characteristics that are of interest, employing methods such 

as the use of the Hamming Norm [15] or clustering 

techniques [16]. Other sampling and caching techniques 

and criteria that may be adapted for the system are 

discussed in [17] to [20]. An approximation of the data 

stream or summary data structure may be also employed, 

such as wavelets [21][22], histograms [23], or sliding 

windows to reduce the amount of data stored.  

If no DBMS is involved, then we can take the streams 

directly through a real-time stream processing phase via the 

Real-Time Processor and then provide the Image Stack 

stream view. Unlike in offline processing, in the real-time 

processing, the streams are co-registered with possibly less 

accuracy, depending on the availability of fast algorithms 

and hardware, which may employ heuristics or 

approximations and is beyond the scope of our work.  

By separating the processing of data into two paths: 

real-time and offline, data can be processed and viewed on 

a real-time basis or may be viewed later. Thee data flow 

path is split into these two paths because we may have 

different algorithms in processing real-time data and data to 

be stored in the DBMS in regards to performance, speed, 

and accuracy.  

3.3 Stack View Management and Querying 

The Image Stack View is the main interface for the user to 

view and access the stack data. Queries and data 

manipulation in the Image Stack View takes place via the 

Query Engine module. A user issues an isOQL query on the 

data in the Image Stack View, which would send the query 

to the Query Engine. Figure 3 shows the layering of the 

database languages made use by the system. At the top 

layer is isOQL, which is used to interact with the Image 

Stack model. Below isOQL are extensions needed to the 

existing DBMS to handle multi-dimensional data. Beneath 

the extension layer are the existing database languages, 

such as JDOQL. The language layering allows isOQL and 

the Image Stack view to be used in a variety of 

environments. The high level query language, isOQL, is 

used so that it would be easier for the user of the system to 

query it, hiding much of how the Image Stack model is 

implemented in the DBMS. isOQL incorporates the real-

time and DBMS aspects of the system. 

The Query Engine determines whether the data 

necessary to answer the query is present in the Image Stack 

View, or if more data would need to be loaded from the 

Stack Database, or if real-time data needs to be requested 

from the Stream Processor. If necessary, it sends commands 

(shown in dashed arrows in Figure 4) to the Stack Database 

to load the data into the Image Stack View and executes the 

query there. If the query requires real-time data, the Query 

Engine sends a request for data to the Stream Processor and 

sends the data to the Image Stack View via the Real-Time 

Processor. It is possible that the user would wish to use the 

output of a query as one of the inputs to another. Since the 

results of all queries are initially stored in the Image Stack 

View, the user may store the query results in the Stack 

Database.  

4. System and Data Model Implementation 

Figure 5 shows the class structure diagram used in Java to 

implement the above functionality. A Stack, Frame, and a 

 

Figure 5: Class architecture for JDO implementation. 



 

Cell are subclasses of special super-class, called the 

Attribute-Relationship Object. An Attribute-Relationship 

Object has a dynamic list of Attribute objects. Since the 

Stack, Frame, and Cell classes are Attribute-Relationship 

Objects, they have a list of Attributes, so any number of 

user-defined attributes can be added to the whole Stack, 

Frame or single Pixel, providing storage of data at all 

levels.  

We have implemented the data model in Java Data 

Objects (JDO) [26], making use of the OO-DBMS 

FastObjects t7 [27]. We have a preliminary implementation 

of isOQL built on top of JDOQL, which is demonstrated at 

[13], using land surface temperature data from the MODIS 

instrument [14] aboard the Terra satellite, which is already 

co-registered. Future work will adapt advanced co-

registration methods such as [25] if co-registration data is 

not available. 

5. Conclusion and Future Work 

We are pursuing further development of the Image Stack 

view along with streams of stacks over a multitude of 

multimedia streams. The intent is to provide such a view 

over data whether or not a DBMS is used at all. We 

highlight an isOQL engine and Image Stack system without 

use of a DBMS since many of the data streams broadcasted 

via the Internet will not reside in a DBMS.  
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