
Tracking Multiple Topics for Finding Interesting Articles
Raymond K. Pon

Alfonso F. Cárdenas
UC Los Angeles

420 Westwood Plaza
Los Angeles, CA 90095

{rpon, cardenas}@cs.ucla.edu

David Buttler
Lawrence Livermore National

Laboratory
7000 East Ave

Livermore, CA 94550
buttler@llnl.gov

Terence Critchlow
Pacific Northwest National Laboratory

902 Battelle Blvd
Richland, WA 99352

terence.critchlow@pnl.gov

ABSTRACT
We introduce multiple topic tracking (MTT) for iScore to better
recommend news articles for users with multiple interests and to
address changes in user interests over time. As an extension of the
basic Rocchio algorithm, traditional topic detection and tracking,
and single-pass clustering, MTT maintains multiple interest
profiles to identify interesting articles for a specific user given
user-feedback. Focusing on only interesting topics enables iScore
to discard useless profiles to address changes in user interests and
to achieve a balance between resource consumption and
classification accuracy. Also by relating a topic’s interestingness
to an article’s interestingness, iScore is able to achieve higher
quality results than traditional methods such as the Rocchio
algorithm.

We identify several operating parameters that work well for MTT.
Using the same parameters, we show that MTT alone yields high
quality results for recommending interesting articles from several
corpora. The inclusion of MTT improves iScore’s performance by
9% in recommending news articles from the Yahoo! News RSS
feeds and the TREC11 adaptive filter article collection. And
through a small user study, we show that iScore can still perform
well when only provided with little user feedback.

Categories and Subject Descriptors
H3.3.1 [Information Storage and Retrieval]: Content Analysis
and Indexing, Retrieval Models, Search Process

General Terms
Algorithms, Management, Performance, Design,
Experimentation, Human Factors.

Keywords
News filtering, personalization, news recommendation

1. INTRODUCTION
An explosive growth of online news has taken place in the last
few years. Users are inundated with thousands of news articles,
only some of which are interesting. A system to filter out
uninteresting articles would aid users that need to read and
analyze many news articles daily, such as financial analysts,
government officials, and news reporters.

In [1], iScore is introduced to address how interesting articles can
be identified in a continuous stream of news articles. Instead of
applying the most naïve approach for news filtering, which is to
learn keywords of interest for a user [2-4], iScore tries to identify
the multitude of characteristics that make an article interesting for
a specific user. In iScore, a variety of features are extracted from
each article, ranging from topic relevancy to source reputation.
The combination of multiple features yields higher quality results
for identifying interesting articles for different users than
traditional methods, such as the Rocchio algorithm [5].
Despite incorporating other article features in addition to
relevancy to topics of interest, iScore still performs poorly with
users that have very general interests (as opposed to very specific
interests). iScore addresses relevancy by using the output of
classifiers (e.g., Rocchio) that maintain a single interest profile.
Unfortunately, iScore suffers when a user has a set of interests
that are orthogonal to one another, which cannot be accurately
represented by a single interest profile. In this paper, we extend
iScore to address this shortcoming by extending the traditional
Rocchio algorithm by using multiple profile vectors instead of
one. This is a similar technique used in topic detection and
tracking (TDT) [6], but applied to an online personalized news
recommendation setting. Unlike in a TDT environment, where all
new topics are identified and continually tracked by identifying
their related articles, identifying interesting articles for a specific
user is different for two reasons: first, not all topics are of equal
interest to a user; second, a user’s interest in a topic continually
changes overtime. A topic that may have been interesting in the
past may not be interesting in the future.
Addressing these two distinctions between TDT and news
recommendation and the shortfall of the existing iScore system,
we make the following contributions:

1. Instead of identifying all new topics and tracking all
articles for those topics as in TDT, we focus on the
specific users interests, which are under continuous
evolution. Focusing on only evolving user interests
instead of all topics allows for more efficient resource
utilization.

2. We show that the use of multiple profile vectors yield
significantly better results than traditional methods,
such as the Rocchio algorithm, for identifying
interesting articles. Additionally, the addition of
tracking multiple topics as a new feature in iScore,
improves iScore classification performance.

3. For a specific user as a case study, we analyze the
operating parameters for our algorithm for their
resource usage and classification performance.

Copyright 2007 Association for Computing Machinery. ACM
acknowledges that this contribution was authored or co-authored by an
employee, contractor or affiliate of the U.S. Government. As such, the
Government retains a nonexclusive, royalty-free right to publish or
reproduce this article, or to allow others to do so, for Government
purposes only.
KDD’07, August 12-15, 2007, San Jose, California, USA.
Copyright 2007 ACM 978-1-59593-609-7/07/0008...$5.00.

560

Research Track Paper

4. We show that multiple topic tracking yields
significantly better results than the best results from the
last TREC adaptive filtering run.

2. RELATED WORK
2.1 News Recommendation Systems
In this paper, we extend iScore [1] to better handle multiple user
interests. iScore is a recommendation system in a limited user
environment. In addition to iScore, there are a variety of different
news recommendation systems.

Work by [7] ranks news articles and new sources based on several
properties in an online method. They claim that important news
articles are clustered. They also claim that mutual reinforcement
between news articles and news sources can be used for ranking,
and that fresh news stories should be considered more important
than old ones. In our approach, we rank news articles based on
various properties in an online method, but instead of ranking
articles using mutual reinforcement and article freshness, we
study a different variety of features. Additionally, when training
our classifiers, we also take into account freshness by considering
the most recent news articles as more important than older ones.
Other systems perform clustering or classification based on the
article’s content, computing such values as TF-IDF weights for
tokens. A near neighbor text classifier [4] uses a document vector
space model. A personalized multi-document summarization and
recommendation system by [8] recommends articles by
suggesting articles from the same clusters in which past
interesting articles are located. Another clustering approach,
MiTAP [9] monitors infectious disease outbreaks and other global
events. Multiple information sources are captured, filtered,
translated, summarized, and categorized by disease, region,
information source, person, and organization. However, users
must still browse through the different categories for interesting
articles. Unlike [8] and [9], the multiple topic tracking (MTT)
presented here and used by iScore clusters news articles in an
online fashion as documents arrive and as the user interacts with
iScore. Instead of pre-computing clusters of all documents, iScore
only computes centroids of clusters of interesting articles as
articles arrive on the document stream. In other words, the
clusters are user-specific, as interesting articles differ from user to
user. Furthermore, in MTT, each cluster, which represents a topic
of interest, has an associated interestingness value which is
continually updated. Using this topic interestingness and an
article’s relationship with the topic, MTT infers the article’s own
interestingness. Also, unlike other cluster-based recommendation
systems, iScore’s MTT metric discards uninteresting or unhelpful
clusters over time to improve the quality of results and resource
usage.

2.2 Adaptive Information Filtering
Our work in iScore is closely related to the adaptive filtering task
in TREC, which is the online identification of news articles that
are most relevant to a set of topics. The task is different from
identifying interesting articles for a user because an article that is
relevant to a topic may not necessarily be interesting. However,
relevancy to a set of topics of interest is a prerequisite for
interestingness. The report by [10] summarizes the results of the
last run of the TREC filtering task. In the task, topic profiles are
continually updated as new articles are processed. The profiles are

used to classify a document’s relevancy to a topic. Like much of
the work in the task, we use adaptive thresholds and incremental
profile updates.
In [11], the authors use a variant of the Rocchio algorithm, in
which they represent documents as a vector of TF-IDF values and
maintain a profile for each topic of the same dimension. The
profile is adapted by adding the weighted document vector of
relevant documents and by subtracting the weighted vector of
irrelevant documents. Other methods explored in TREC11 include
using a second-order perceptron, an SVM [12], a Winnow
classifier [12], language modelling [13], probabilistic models of
terms and relevancy [14], and the Okapi Basic Search System
[15]. iScore’s MTT, like Rocchio and [11], represents documents
as vectors of TF-IDF values but instead of maintaining a single
profile, MTT maintains multiple profiles to represent the distinct
topics that the user is interested in and relates the topic’s own
interestingness to the article’s interestingness.

2.3 Ensembles
Other works, like ours, have leveraged multiple existing
techniques to build better systems for specific tasks. For example,
in [16], the authors combine two popular webpage duplication
identification methods to achieve better results. Another example
is by [17], which combines the results from multiple outlier
detection algorithms that are applied using different sets of
features.
A closely related ensemble work by [18] combines multiple
ranking functions over the same document collection through
probabilistic latent query analysis, which associates non-identical
combination weights with latent classes underlying the query
space. The overall ranking function is a linear combination of the
different ranking functions. In contrast to [18], we combine
functions that are not necessarily ranking functions in isolation.
Each function is designed to capture a different aspect of
interestingness and needs to be combined to generate meaningful
scores for interestingness. MTT is another aspect of
interestingness that is easily added to the iScore framework.

2.4 Topic Detection and Tracking
Topic detection and tracking (TDT) identifies new events and
groups news articles that discuss the same event. Formally, TDT
consist of five separate tasks: (1) topic tracking, (2) first story
detection, (3) topic detection, (4) topic linkage, and (5) story
segmentation [6].
Many TDT systems, like [19], [20], and [21] are simply a
modification of a single pass clustering algorithm. They compare
a news story against a set of profile vectors kept in memory. If the
story does not match any of the profiles by exceeding a similarity
threshold, the story is flagged as a new event and a new profile is
created using the document vector of the news story. Otherwise,
the news story is used to update the existing profiles. Other work,
such as [22], add simple semantics of locations, names, and
temporal information to the traditional term frequency vectors
used in previous work.
Although we make use of a similar single-pass clustering
algorithm, there are several subtle differences between identifying
interesting articles and TDT. First, not all topics are of equal
interest to a user. Instead of identifying all new topics and
tracking all articles for those topics as in TDT, we focus on the

561

Research Track Paper

specific users interests, which are under continuous evolution.
Additionally, we use the interestingness of topics when evaluating
the interestingness of news articles that belong to their respective
topics. Furthermore, a user’s interest in a topic continually
changes over time. A topic that may have been interesting in the
past may not be interesting in the future. Consequently, we
discard old profile vectors that are no longer of interest to reduce
resource consumption, to speed up document evaluation, and to
improve the quality of results.
Another closely related of work is in the discovery of
evolutionary theme patterns (ETP) from text [23]. In ETP,
documents are partitioned into possibly overlapping
subcollections according to their publication time. The most
prominent themes (or subtopics) are extracted from each
subcollection. For any themes in two different subcollections, an
ETP solution decides whether there is an evolutionary transition
from one theme to the other. The general ETP problem is not
restricted to operation within an online and continuous
environment, so the solution posed by [23] is an offline data
mining solution to discovering and clustering patterns and so is
not directly applicable to discovering interesting articles as they
are published. Additionally, the solution posed by [23] does not
learn which themes or topics are of interest to the user, and so all
themes are maintained and are not useful for classifying the
interestingness of an article. In ETP, the evolutionary
relationships among themes at different times are also explicitly
identified, which is not necessary for discovering the most
interesting articles for the user as they are published.

3. iScore Architecture
In iScore, news articles are processed in a streaming fashion,
much like the document processing done in the TREC adaptive
filter task. Articles are introduced to the system in chronological
order of their publication time. Once the system classifies an
article, an interestingness judgment is made available to the
system by the user.
The article classification pipeline consists of four phases, shown
in Figure 1. In the first phase, for an article d, a set of feature
extractors generate a set of feature scores F(d) ={f1(d),
f2(d),…,fn(d)}. In [1], we implemented several topic relevancy
features, uniqueness measurements and other features, such as
source reputation, freshness, subjectivity, and polarity of news
articles. Then a classifier C generates an overall classification
score, or an iScore I(d):

))(),...,(),(()(21 dfdfdfCdI n= (1)

In [1], we found that a naïve Bayesian classifier can identify
interesting articles well. Next, the adaptive thresholder thresholds
the iScore to generate a binary classification, indicating the
interestingness of the article to the user. The adaptive thresholder
tries to find the optimal threshold that yields the best metric
result, such as F-measure (where β = 0.5) or TREC11’s utility
metric T11SU. In the final phase, the user examines the article
and provides his own binary classification of interestingness (i.e.,
tagging) I′(d). This feedback is used to update the feature
extractors, the classifier, and the thresholder. The process
continues similarly for the next document in the pipeline. Because
of iScore’s extensibility, multiple topic tracking (MTT) is added
to the system as a new feature extractor.

4. MULTIPLE TOPIC TRACKING
4.1 Motivation
Many information filtering algorithms are based on the Rocchio
algorithm, which represents topics and documents as vectors.
Each value of the vector is a TF-IDF value for its respective term
[5]. A single profile vector p is maintained. For each document,
the cosine similarity, or the cosine of the angle between the
document vector d and the profile vector is measured.

||||

),cos(
pd
pdpd •

= (2)

The document is classified as relevant or interesting if the
similarity is greater than some threshold. The profile vector is
updated by adding the vector of interesting documents to the
profile vector. There are variations of the Rocchio algorithm, such
as subtracting irrelevant document vectors from the profile vector
[11].

Figure 1: Article classification pipeline.

Figure 2: Failure of identifying relevant documents for

multiple topics.

562

Research Track Paper

The Rocchio algorithm tries to find the single ideal query, or
vector, that would find all interesting articles, by using the
centroid of the cluster that would contain all interesting articles.
However, because of the diversity in the set of interests just for a
single user, finding a single ideal query is not possible [24]. If a
user has a wide range of interests, using one vector to represent
his interests would dilute the sensitivity of the Rocchio algorithm.
Figure 2 illustrates this problem. Although the cluster of all the
interesting documents would contain interesting documents, it
would also contain many uninteresting articles due to its size. If
the user is interested in many orthogonal topics, then the
encompassing cluster would be much larger and would also
contain many more uninteresting articles as well.
Instead, in MTT, a set of more narrow queries or profile vectors
that more accurately represent a user’s interests than a single
vector is maintained. For example, in Figure 2, MTT maintains
smaller topic clusters instead of the larger encompassing cluster,
improving classification precision. In other words, a set of experts
is generated and maintained (one for each specific interesting
topic) instead of referring to a single general expert. Using
specialized profiles instead of a single general profile reduces
classification bias by focusing more on specific topics; at the
same time, using multiple vectors keeps classification variance
low.
Also the traditional Rocchio algorithm and TDT algorithms do
not take into account the different degrees of interest among
different topics. By focusing on individual topics, MTT can learn
the user’s level of interest for a specific topic and relate the
topic’s interestingness to related articles; thereby, improving the
quality of news recommendation results. By associating a level of
interest for specific topics, MTT can also learn when a user’s
interests have changed. Topics that were of interest in the past
may no longer be interesting in the future. Topics that have grown
to be uninteresting to the user can be discarded.

4.2 Algorithm
In MTT, each document and profile vector is represented as a TF-
IDF vector, where each value of the vector is the TF-IDF value of
the vector element’s corresponding stemmed term. Terms are
stemmed using the Porter algorithm [25] and stop-words are
ignored. A set of profiles P is maintained, which is initially
empty. Until an interesting article arrives on the document stream,
each article is scored with a 0. When an interesting article does
arrive, a new profile vector p1 is created using the article’s TF-
IDF vector and added to P. Each subsequent article on the
document stream with a document vector d is processed as
follows:

1. Find the profile vector with the maximum similarity
with d. This profile represents the closest topic of
interest to the document and is denoted as pmax.

2. The score for a document is the product of the precision
of pmax for predicting interesting articles and the
similarity between pmax and d. In other words:

),cos(*)()(maxmax dppprecisiondfMTT = (3)
The precision of pmax describes how well pmax can
accurately identify interesting articles. The precision
describes how interesting the user finds the topic that
the profile vector represents. By multiplying the

interestingness of the topic with the document’s
similarity to the topic, we relate the interestingness of
the containing topic to the document.

3. If the article is interesting and the similarity between d
and pmax is less than the cluster threshold tcluster, a new
profile is generated using d. However, if the similarity
is greater than or equal to tcluster, then pmax is updated as
follows:

 dpp += maxmax (4)
Intuitively, a new profile is created because a new topic
has been encountered. Each profile vector is simply the
centroid of the cluster of its related articles.

4. If the article is not interesting and the similarity
between d and pmax is greater than the classification
threshold tclassification, then pmax is updated as follows:

 dpp *maxmax γ−= (5)
Because the profile misclassifies the article as
interesting, the cluster is updated to remove the
influence of terms that are not useful for predicting
interestingness. This technique is similar to query
zoning [26], where a select set of non-relevant articles
that have some relationship to a user’s interests is used
for updating profile vectors. The parameter γ determines
how much weight negative documents in the query zone
have on the topic profile.

As more documents are processed, it is possible that many
profiles may be kept and maintained, making MTT expensive.
However, there are two discard methods that can reduce resource
consumption and improve the quality of results. The first method
discards profiles whose topics are no longer interesting.
Mentioned earlier, each profile vector has an associated precision
for identifying interesting articles, which is defined as:

tionclassifica

tionclassifica

tdp
tdp

pprecision
>

>
=

),cos(w/ Articles#
),cos(w/ articles gInterestin#

)((6)

In other words, the precision of a profile p is the proportion of
articles that belong to p that are truly interesting. Profiles that
have a precision less than the threshold tprecision, are discarded
because the topic that the profile represents is no longer
interesting to the user.
The second method discards profiles whose topics are no longer
active or current. At most M profiles are maintained in memory. If
there are already M profiles being maintained, when a new profile
must be created, then an old profile must be discarded and the
least recently used profile is selected for discard. A profile is
considered “used” when an interesting article best matches the
profile (i.e., when the profile is selected as pmax).

5. EXPERIMENTAL RESULTS
iScore is implemented with an assortment of tools in Java. The
system pipeline is implemented with the IBM UIMA framework
[27], using classifiers from LingPipe [28], OpenNLP [29], and
Weka [30].
We evaluate iScore against three data sets. The first data set is a
collection of 35,256 news articles from all Yahoo! News RSS
feeds, collected between June and August 2006. The classification
task is to identify which articles come from which RSS feed. The

563

Research Track Paper

43 RSS feeds considered for labeling are feeds of the form: “Top
Stories <category>”, “Most Viewed <category>”, “Most
Emailed <category>”, and “Most Highly Rated <category>.”
Because user evaluation is difficult to collect and such data is
often sparse, the Yahoo! news articles and their source feeds are
used for their resemblance to user labeled articles. For example,
RSS feeds such as “Most Viewed Technology” is a good proxy of
what the most interesting articles are for technophiles. Other
categories, such as “Top Stories Politics,” are collections of news
stories that the Yahoo! political news editors deem to be of
interest to their audience, so the feed also would serve well as a
proxy for interestingness.
The second data set consists of user taggings and articles from the
web collected between August 2006 to January 2007. Users are
asked to tag articles that they read as interesting or not interesting
using a web browser plug-in. Web pages of the referring page of
the tagged article are also downloaded to determine the articles
that the user chose not read, which is considered as uninteresting.
After manually discarding junk web pages (i.e., non-news
articles), a total of 13,281 web pages remain with six users who
tagged at least 49 interesting articles. Using this data set, the
classification task is to identify the interesting news articles for
each of the six users from each user’s own pool of articles that he
had access to. Unfortunately, this data set is small compared to
the other data sets, but it should provide some insight on the
relative performance of classifiers on real-world data.
The final data set comes from the TREC11 adaptive filter task,
which uses the Reuters RCV1 corpus and a set of assessor manual
taggings for 50 topics, such as “Economic Espionage.” The
corpus is a collection of 723,432 news articles from 1996 to 1997.
Although the TREC adaptive filter work addresses topic
relevancy and not necessarily interestingness, the task is done in a
similar online and adaptive fashion as in iScore, and the topics
may serve as reasonable proxies for a set of users.

We use precision, recall, and F-measure, where β = 0.5, which
weights precision more than recall, for system evaluation:

|ArticlesInt |

2
|Retr Articles|

|Retr ArticlesInt |
2

1

β

β

β
+

⎟
⎠
⎞

⎜
⎝
⎛ +

=F (7)

F-measure is 0 when the number of articles retrieved is 0.
TREC11’s T11SU is also used for comparing the performance of
iScore with the work done in TREC11:

|Articles gInterestin|*2

|Retr ArticlesUnint | |Retr ArticlesInt |*211

1)5.0,11max(*211
−

=

−=

NUT

NUTSUT
 (8)

For systems that retrieve no articles, the system would have a
T11SU score of 0.33.
Resource consumption is measured as the number of profiles that
is currently being maintained. The run-time and memory
consumption of MTT is linear with respect to the number of
profiles. Statistical significance tests are applied where
appropriate using the t-test at p ≤ 0.1.

5.1 Case Study: Operating Parameters
To find good values for the operating parameters: tcluster,

tclassification, tprecision, γ, and M, we evaluate the resource
consumption and the quality of results produced by MTT with
various parameters for the “Politics Top Stories” RSS feed. For
simplicity and to evaluate MTT in isolation, we use the pipeline
shown in Figure 3 instead of the complete iScore pipeline. The
adaptive thresholder optimizes for F-measure (β = 0.5).
We first evaluate the effect of tcluster on MTT by varying tcluster
while holding tprecision, tclassification, M, and γ at 0.5, 0.5, ∞., and 0,
respectively. The results are shown in Figure 4a. As tcluster
increases, articles are discouraged from clustering. Consequently,
the average number of profiles held increases as tcluster increases.
Low tcluster values cause fewer clusters to be formed, causing MTT
to behave similarly as Rocchio when tcluster is low. The figure also
shows that any tcluster value greater than 0.6, there is no significant
increase in the quality of results while there is an increase in
resource consumption. From this observation, we use 0.6 for tcluster
for all subsequent experiments.
Next we evaluate the effect of tprecision on MTT by varying tprecision
while holding tcluster, tclassification, M, and γ at 0.6, 0.5, ∞., and 0,
respectively. Figure 4b shows that there is little variation in
performance overall when tprecision is varied. However, there is a
slight increase in performance when tprecision increases from 0.3 to
0.5. There is also a decrease in resource consumption in the same
range. Overall, fewer profile vectors are kept in memory but the
profiles are more precise in identifying interesting articles when
tprecision is increased. Performance peaks when tprecision = 0.5, with
performance slightly decreasing for any values beyond 0.5 with
very little decrease in resource consumption. Consequently, for all
later experiments, we use 0.5 for tprecision.
Next we evaluate tclassification on MTT by varying tclassification while
holding tcluster, tprecision, M, and γ at 0.6, 0.5, ∞., and 0, respectively.
As tclassification increases, the average number of profiles held in
memory increases. Profiles are discarded when they generate too
many false positives due to the minimum precision discard
mechanism. Higher tclassification values make it more difficult for
the profiles to generate false positives (while generating many
more false negatives), so fewer profiles are discarded. Figure 4c
shows that a good value for tclassification is 0.4. Values less than 0.4
cause profiles to generate too many false positives and are
consequently discarded, so fewer profiles are kept, decreasing the
number of topics that can be tracked. However, too high of a
value for tclassification will lead to too many false negative
classifications, as shown in the decrease in recall in Figure 4c.
Interestingly, there is also a decrease in precision for too high
tclassification values. This is most likely due to noise caused by
anomalous taggings that would normally be removed when low
precision profiles are discarded. It is also due to changes in user
interests which are immediately addressed by removing low
precision profiles as well. For all subsequent experiments, we use
0.4 for tclassification..

Figure 3: MTT evaluation pipeline.

564

Research Track Paper

Next we evaluate the effect of M, which is the maximum number
of profiles kept in memory, while holding tcluster, tprecision,
tclassification, and γ at 0.6, 0.5, 0.4, and 0, respectively. Figure 4d
shows that that as the number of maximum profiles increase, the
quality of results improve, with significantly higher precision.
However, it is inconclusive to determine if it is better to leave the
number of profiles unbounded because the number of profiles

kept in memory for “Politics Top Stories” is at most 500. It is
difficult to determine the tradeoff in resource consumption with
performance, given the results in Figure 4d. A data set that spans
a large period of time is likely needed to determine a good M
value. So for all subsequent experiments, we leave the number of
profiles kept in memory to be unbounded, or M=∞.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Cluster Threshold

0

50

100

150

200

250

300

350

400

A
ve

ra
ge

 N
um

be
r o

f P
ro

fil
es

 H
el

d

F-Measure
Precision
Recall
Average Number of Profiles Held

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Precision Threshold

0

50

100

150

200

250

300

350

400

450

500

A
ve

ra
ge

 N
um

be
r o

f P
ro

fil
es

 H
el

d

F-Measure
Precision
Recall
Average Number of Profiles Held

 (a) (b)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Classification Threshold

0

50

100

150

200

250

300

350

400

450

A
ve

ra
ge

 N
um

be
r o

f P
ro

fil
es

 H
el

d

F-Measure
Precision
Recall
Average Number of Profiles Held

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

100 200 300 400 Infinity
Maximum Number of Profiles

0

50

100

150

200

250

300

A
ve

ra
ge

 N
um

be
r o

f P
ro

fil
es

 H
el

d

F-Measure
Precision
Recall
Average Number of Profiles Held

 (c) (d)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2
Gamma

245

250

255

260

265

270

275

280

285

290

A
ve

ra
ge

 N
um

be
r o

f P
ro

fil
es

 H
el

d

F-Measure
Precision
Recall
Average Number of Profiles Held

(e)

Figure 4: Operating parameters for Politics Top Stories from the Yahoo! RSS Feeds

565

Research Track Paper

Finally, we evaluate the effect of γ, which controls how much of
an effect that misclassified uninteresting articles have (compared
to interesting articles), by varying γ, while holding tcluster, tprecision,
tclassification, and M at 0.6, 0.5, 0.4, and ∞., respectively. Figure 4e
shows that there is very little effect caused by γ. There is only a
slight increase in performance when γ =0.5. However, there is a
significant change in memory consumption, as γ increases. Since
the profiles are actually the centroids of clusters of interesting
documents, using a large γ value, changes the natural document
clusters. As more documents are processed, new clusters must be
generated since the natural clusters no longer exist. However,
using a small non-zero γ value can help reduce the noise in the
clusters and improve the classification quality. For all subsequent
experiments, we use 0.5 for γ.
A similar case study was performed for the “Technology Top
Stories” RSS feed. Good values found for the feed are tcluster = 0.7,
tprecision = 0.8, tclassification = 0.4, and M = ∞. Using these values,
varying γ had no effect. The parameter configuration seems to be
user-dependent. However, for simplicity, we use the good
parameters found for the “Politics Top Stories” feed for all
subsequent experiments.

5.2 Overall Performance
Given the results from the case study for finding good operating
parameters for the “Politics Top Stories” RSS feed, we applied
MTT with the same parameters to all the other RSS feeds. In this
experiment as well, the adaptive thresholder optimizes for F-
measure. We use tcluster=0.6, tprecision=0.5, tclassification=0.4, M=∞,
and γ =0.5. The mean average results are shown in Figure 6.
In Figure 6a, we compare the overall performance of various
classifiers after processing 10,000 documents, including Rocchio
and the Rocchio variant from [11], which performed the best in
the TREC11 adaptive filter task. The figure shows that MTT
performs significantly better than the Rocchio variant, with a
mean average F-measure (where β=0.5) of 0.500, performing 40%
better. MTT also outperforms Rocchio by 82%. According to the
t-test, MTT’s improvements over Rocchio and its variant are
statistically significant (p = 2.7E-11 over Rocchio, p = 1.6E-06
over the Rocchio variant).
We also evaluate MTT when it is included in the complete iScore
pipeline. We evaluate two iScore systems, one with the complete
feature set from [1] and one with a reduced feature set with the
highest correlated features to interestingness. The reduced feature
set contains all the features from [1] except for freshness, new n-
gram anomaly detection, and n-gram and tokenized language
modelling anomaly detection. Figure 6a shows iScore with MTT
has a similar F-measure performance as MTT alone, with iScore
yielding greater recall and lower precision. Figure 6a also shows
that the inclusion of MTT into iScore results in a statistically
significant increase of 9% in F-measure (p = 0.09). Closer
examination of each individual RSS feed shows positive
improvement for most RSS feeds in Figure 5. RSS feeds with a
lower average number of profiles held in memory due to very few
interesting articles are more likely to yield negative improvement.
Figure 6b shows the performance of the classifiers over time as
well as the mean average number of profiles held in memory. The
F-measure dramatically increases after processing 10,000 articles.
The figure also shows statistically significant improvements (p <
0.02) that MTT and iScore with MTT have over Rocchio, the
Rocchio variant, and iScore without MTT. After processing
25,000 documents, there is a statistically significant 10% increase
in performance of iScore caused by the inclusion of MTT (p =

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43

Individual RSS Feeds

F-
M

ea
su

re
 Im

pr
ov

em
en

t

0

100

200

300

400

500

600

700

800

Reduced iScore Improvement
Full iScore Improvement
Average Number of Profiles Held

A
ve

ra
ge

 N
um

be
r o

f P
ro

fil
es

 H
el

d

Figure 5: Overall improvement (after processing 10,000

documents) of iScore by including MTT for individual RSS
feeds. Each column is an individual RSS feed.

0.
27

4 0.
35

6

0.
50

0

0.
44

5

0.
48

6

0.
44

6

0.
48

9

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Rocchio Rocchio
Variant

MTT Full
iScore

Full
iScore +

MTT

Reduced
iScore

Reduced
iScore +

MTT

Average F-Measure
Average Precision
Average Recall

0

0.1

0.2

0.3

0.4

0.5

0.6

5000 10000 15000 20000 25000 30000 35000
Documents processed

0

100

200

300

400

500

600

700

A
ve

ra
ge

 N
um

be
r o

f P
ro

fil
es

 H
el

d

Rocchio
Rocchio Variant
MTT
Reduced iScore
Reduced iScore + MTT
Full iScore
Full iScore + MTT
Number of Profiles Held

F-
M

ea
su

re
 o

f L
as

t 5
00

0
D

oc
um

en
t W

in
do

w

 (a) (b)
Figure 6: Performance over time of iScore and MTT using the Yahoo! RSS Feeds. Figure 5a shows the overall performance of the

classifiers after processing 10,000 documents. Figure 5b shows the performance of the classifiers over time.

566

Research Track Paper

0.02), which is consistent to what was observed in Figure 6a.
Although, it seems that MTT alone performs better than iScore
with MTT after processing 25,000 documents, the t-test shows
that that increase is not statistically significant (p = 0.23) for both
feature sets. The figure also shows that the average number of
profiles held increases linearly as more documents are processed.
This behavior is expected since new topics continually appear and
the maximum number of profiles is left unbounded for these
experiments so no unused interesting topics are discarded. Further
study with a larger corpus is necessary to determine a good
maximum, if any.

5.3 User Study
In addition to the Yahoo! RSS feed articles, we also compare the
performance of MTT and iScore with Rocchio and the Rocchio
variant on a collection of web pages tagged by users using a web
browser plug-in. In our experiments where positive user taggings
are sparse, we find that the adaptive thresholder performs better
when it optimizes for T11SU instead of F-measure, so in this set
of experiments, the adaptive thresholder optimizes for T11SU.
Also due to the scarcity of negative user taggings compared to the
size of the entire data collection, we infer additional negative user
taggings for articles that the user did not read but were accessible
from the referring page of an article tagged by the user.
Consequently, for each user, interesting news articles are
predicted from a pool of articles consisting of articles that the user
actually tagged and articles that were accessible from referring
pages of tagged articles. We use the same operating parameters
found in our case study for the “Politics Top Stories” RSS feed.
The results of the user study are shown in Figure 7. In Figure 7a,
MTT has higher precision than the Rocchio variants but has much
lower recall. As a result, MTT’s F-measure performance is lower
than the Rocchio variants. iScore with MTT performs 10% better
than Rocchio in terms of F-measure. And the inclusion of MTT
improves iScore by 2%. However, the comparison of the results is
difficult to determine because the t-test indicates that the
comparisons are not statistically significant with p ≥ 0.25. More
users are necessary to make a definitive judgment, which is likely
to be similar to the statistically significant judgments made with
the Yahoo! data set. Closer inspection of each individual user

shows F-measure improvement to iScore for most users when
MTT is included into iScore’s feature set, as shown in Figure 7b.
Although a smaller and potentially noisier data set, this limited
user study shows that iScore with MTT can work well even with a
limited number of user taggings. For the Yahoo! data set, each
RSS feed has an average of 655 tagged articles. In contrast, this
limited study, as shown in Figure 7b, has a much smaller
collection of taggings with each user tagging an average of 95
interesting articles.
Although iScore with MTT performs better than traditional
techniques, it performs poorer in this data set than in the Yahoo!
data set, which is most likely due to the noise in the data
collection caused by the inference of additional negative user
taggings. Also the web pages contain peripheral information in
addition to the news story, such as navigation menus and links to
other web pages, which make processing the content of the news
story more difficult.

5.4 TREC Filtering
Although the TREC11 adaptive filter task is to retrieve all articles
relevant to a query, regardless of its interestingness to a user, we
want to see how well MTT and iScore performs against other
adaptive filters from TREC11. MTT and the full iScore feature set
are compared with the best filters from each participating group in
TREC11 against the TREC11’S RCV1 corpus in Figure 8. As in
the user tagging collection, the taggings in the TREC collection
are very sparse relative to the size of the collection, so the
adaptive thresholder optimizes for T11SU as well. We use the
same operating parameters found in our case study for the
“Politics Top Stories” RSS feed. Figure 8a shows that MTT has
an F-measure 37.8% better than the best performing filter in
TREC11 [11]. MTT also yields higher precision and recall. When
MTT is incorporated into iScore, F-measure improves by 9% but
is not statistically significant (p = 0.25). According to [1], features
other than topic relevancy features are not useful for identifying
interesting articles to the TREC topics. The addition of irrelevant
features causes the statistically significant difference in
performance between MTT alone and iScore with MTT (p < 0.01)

0.
36

9

0.
29

3

0.
29

2

0.
40

6

0.
39

7
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Rocchio Rocchio
Variant

MTT Full iScore Full iScore +
MTT

F-Measure
Precision
Recall

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

User 1 User 2 User 3 User 4 User 5 User 6

F-
M

ea
su

re
 Im

pr
ov

em
en

t

0

20

40

60

80

100

120

140

160

180

200

N
um

be
r o

f A
rt

ic
le

s

Improvement

Number of Tagged
Interesting Articles

 (a) (b)
Figure 7: Performance of iScore and other classifiers in the user tagging collection. Figure 7a shows the overall performance of the
classifiers. Figure 7b shows the overall of iScore by including MTT for individual users along with the number of tagged articles for

each user.

567

Research Track Paper

while only improving iScore slightly when added as an additional
feature.
Figure 8b shows the performance of iScore and MTT along with
the top three adaptive filters from Figure 8a. TREC only reports
T11SU performance over time instead of F-measure, so T11SU is
shown in Figure 8b. The figure shows that MTT performs much
better over time than all the other classifiers. Like Figure 8a,
Figure 8b does shows statistically insignificant improvement of
2% (p = 0.31) for documents after time period 6.
Comparing Figure 6b and Figure 8b, the resource consumption in
the TREC data is much less than in the Yahoo! data. Despite the
larger size of the TREC corpus, user interests in the TREC data
set are much narrower than that of the Yahoo! data so fewer
profile vectors are necessary to represent the entire range of user
interests.

6. DISCUSSION AND FUTURE WORK
Interestingly, in the Yahoo! data set, MTT alone yields
statistically similar F-measure performance as iScore using the
implemented features from [1] along with MTT. MTT alone may
be sufficient if precision is desired over recall. But if a balance of
recall and precision is needed, then iScore with MTT would be
better than MTT alone. Also, there are use cases where MTT may
be insufficient. MTT excels at identifying new interesting articles
for topics that have already been seen. However, MTT would fail
at identifying “flash point” articles that discuss new interesting
topics that are unrelated to the previously interesting topics. On
the other hand, the iScore framework allows for future features to
be added to the classification pipeline, such as those that would
help identify “flash point” articles, in addition to MTT as another
feature.
The inclusion of MTT into iScore has improved the classification
of interesting documents for most users and data sets by 9%
overall. However, there is room for further study. More news
articles from the Yahoo! RSS feeds are being collected, so that
iScore can be evaluated over a larger corpus (greater than 100,000
articles). In our case study, due to the size of the Yahoo! RSS feed
used to evaluate MTT and the number of relevant articles in the
TREC11 adaptive task, the resource usage behavior of MTT when
the maximum number of profiles is varied could not be accurately

determined. A larger Yahoo! RSS feed collection spanning a large
time period would help determine a good value, if any. More user
taggings of articles by volunteers are being collected to improve
the quality of the user tagging data set as well.
Additionally, in the presented experiments, the parameters were
static for all users. In our case study, it was shown that two
different users can have two different near-optimal parameters
configurations. Using the parameter configuration found here as
starting points and given the expected behavior of MTT for
various parameters, optimal parameters tailored for specific users
with specific memory constraints and quality requirements can be
dynamically learned as more documents are processed so that
maximum performance for each user can be achieved with MTT.

7. CONCLUSION
Multiple Topic Tracking (MTT), inspired by the Rocchio
algorithm and single-pass clustering algorithms used in topic
detection and tracking, is shown to be an effective technique to
classifying news articles as interesting or not interesting for
specific users. By explicitly and distinctly tracking multiple topics
of user interest and their degree of interestingness, MTT addresses
the shortcomings of the Rocchio algorithm’s usage of a single
query to find all interesting articles from across multiple topics
and its inability to quickly adapt to changes in user interests.
Through a case study for a single RSS feed, we found reasonably
good operating parameters for MTT. Using these parameters,
MTT and iScore with MTT is able to perform 40% to 82% better
than existing Rocchio variants when recommending interesting
articles from the Yahoo! News RSS feeds. For the TREC adaptive
filter task, MTT overall performs 37.8% better the best adaptive
filter from TREC11. MTT also outperforms the same filter over
time as more documents are processed in terms of TREC11’s
T11SU metric. The inclusion of MTT can improve iScore’s
performance by 9% overall.
Although more users are necessary to make a more definitive
conclusion on the performance of MTT and iScore in our small
user study, iScore with MTT seems to outperform Rocchio and its
variant. Also through our limited user study, we show that iScore
can still work relatively well even with very few positively tagged
articles.

0.
59

0

0.
42

8

0.
42

2

0.
42

2

0.
42

1

0.
37

8

0.
36

9

0.
34

6

0.
33

4

0.
32

7

0.
31

6

0.
19

6

0.
17

4

0.
11

8

0.
01

4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
M

TT

IC
TA

da
FT

11
U

b

C
M

U
D

IR
U

D
E

SC

th
uT

11
af

2

ok
11

af
1u

K
er

M
IT

T1
1a

f1

re
lie

fs
t1

1u

FD
U

T1
1A

F2

Fu
ll

iS
co

re
 +

M
TT iri
ts

ig
a2

Fu
ll

iS
co

re

pi
rc

2F
01

U
Io

w
a0

2F
ilt

ap
l1

1F
aq

2

ce
da

r0
2a

ffb
0

Average F-Measure
Average Precision
Average Recall

0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3 4 5 6 7 8 9 10 11
Time Period (1 time period = approximately 1 month)

T1
1S

U

0

5

10

15

20

25

30

N
um

be
r o

f P
ro

fil
es

 H
el

d

ICTAdaFT11Ub
CMUDIRUDESC
thuT11af2
Full iScore
MTT
Full iScore + MTT
Average Number of Profiles Held

 (a) (b)

Figure 8: Performance of iScore and MTT in the TREC11 adaptive filter task. Figure 8a shows the overall performance of the
classifiers. Figure 8b shows the performance of the classifiers over time.

568

Research Track Paper

8. ACKNOWLEDGMENTS
This work (UCRL-CONF-228286) was performed under the
auspices of the U.S. Department of Energy by the University of
California Lawrence Livermore National Laboratory under
contract number W-7405-Eng-48.

9. REFERENCES
[1] R. K. Pon, A. F. Cardenas, D. Buttler, and T. Critchlow,

“iScore: Measuring the interestingness of articles in a limited
user environment,” in IEEE Symposium on Computational
Intelligence and Data Mining 2007, Honolulu, HI, April
2007.

[2] R. Carreira, J. M. Crato, D. Gongalves, and J. A. Jorge,
“Evaluating adaptive user profiles for news classification,” in
IUI '04: Proceedings of the 9th international conference on
intelligent user interface. New York, NY, USA: ACM Press,
2004, pp. 206-212.

[3] H.-J. Lai, T.-P. Liang, and Y. C. Ku, “Customized internet
news services based on customer profiles,” in ICEC '03:
Proceedings of the 5th international conference on
Electronic commerce. New York, NY, USA: ACM Press,
2003, pp. 225-229.

[4] D. Billsus, M. J. Pazzani, and J. Chen, “A learning agent for
wireless news access,” in IUI '00: Proceedings of the 5th
international conference on intelligent user interfaces. New
York, NY, USA: ACM Press, 2000, pp. 33-36.

[5] J. Rocchio, Relevance Feedback in Information Retrieval.
Prentice-Hall, 1971, ch. 14, pp. 313-323.

[6] NIST, “The topic detection and tracking 2004 (tdt-2004)
evaluation project,” December 2004. [Online].
Available:http://www.nist.gov/speech/tests/tdt/tdt2004/index
.htm

[7] G. M. D. Corso, A. Gulli, and F. Romani, “Ranking a stream
of news,” in WWW '05: Proceedings of the 14th
international conference on World Wide Web. New York,
NY, USA: ACM Press, 2005, pp. 97-106.

[8] R. Dragomir, R. Weiguo, and F. Zhu, “Webinessence: A
personalized web-based multidocument summarization and
recommendation system.” [Online]. Available:
citeseer.ist.psu.edu/dragomir01webinessence.html

[9] L. Damianos, S. Wohlever, R. Kozierok, and J. Ponte,
“MITAP: A case study of integrated knowledge discovery
tools,” hicss, vol. 03, p. 69c, 2003.

[10] S. Robertson and I. Soboro, “The TREC 2002 filtering track
report,” in TREC 2002, 2002.

[11] H. Xu, Z. Yang, B. Wang, B. Liu, J. Cheng, Y. Liu, Z. Yang,
X. Cheng, and S. Bai, “TREC-11 experiments at CAS-ICT:
Filtering and web,” in TREC11, 2002.

[12] L. Wu, X. Huang, J. Niu, Y. Xia, Z. Feng, and Y. Zhou,
“FDU at TREC2002: Filtering, Q&A, web and video tasks,”
in TREC11, 2002.

[13] L. Ma, Q. Chen, S. Ma, M. Zhang, and L. Cai, “Incremental
learning for profile training in adaptive document filtering,”
in TREC11, 2002.

[14] C. Brouard, “Clips at TREC-11: Experiments in filtering,” in
TREC11, 2002.

[15] S. Robertson, S. Walker, H. Zaragoza, and R. Herbrich,
“Microsoft cambridge at TREC 2002: Filtering track,” in
TREC11, 2002.

[16] M. Henzinger, “Finding near-duplicate web pages: a large-
scale evaluation of algorithms,” in SIGIR '06: Proceedings of
the 29th annual international ACM SIGIR conference on
Research and development in information retrieval. New
York, NY, USA: ACM Press, 2006, pp. 284-291.

[17] A. Lazarevic and V. Kumar, “Feature bagging for outlier
detection,” in KDD '05: Proceeding of the eleventh ACM
SIGKDD international conference on Knowledge discovery
in data mining. New York, NY, USA: ACM Press, 2005, pp.
157-166.

[18] R. Yan and A. G. Hauptmann, “Probabilistic latent query
analysis for combining multiple retrieval sources,” in SIGIR
'06: Proceedings of the 29th annual international ACM
SIGIR conference on Research and development in
information retrieval. New York, NY, USA: ACM Press,
2006, pp. 324-331.

[19] J. Allan, R. Papka, and V. Lavrenko, “On-line new event
detection and tracking,” in SIGIR '98: Proceedings of the
21st annual international ACM SIGIR conference on
Research and development in information retrieval. New
York, NY, USA: ACM Press, 1998, pp. 37-45.

[20] M. Franz, T. Ward, J. S. McCarley, and W.-J. Zhu,
“Unsupervised and supervised clustering for topic tracking,”
in SIGIR '01: Proceedings of the 24th annual international
ACM SIGIR conference on Research and development in
information retrieval. New York, NY, USA: ACM Press,
2001, pp. 310-317.

[21] J. Allan, “Detection as multi-topic tracking,” Inf. Retr., vol.
5, no. 2-3, pp. 139-157, 2002.

[22] J. Makkonen, H. Ahonen-Myka, and M. Salmenkivi,
“Simple semantics in topic detection and tracking,” Inf.
Retr., vol. 7, no. 3-4, pp. 347-368, 2004.

[23] Q. Mei and C. Zhai, “Discovering evolutionary theme
patterns from text: an exploration of temporal text mining,”
in Proceedings of the 11th ACM SIGKDD international
conference on knowledge discovery in data mining. New
York, NY, USA: ACM Press, 2005, pp. 198-207.

[24] R. E. Schapire, Y. Singer, and A. Singhal, “Boosting and
Rocchio applied to text filtering,” in SIGIR '98: Proceedings
of the 21st annual international ACM SIGIR conference on
Research and development in information retrieval. New
York, NY, USA: ACM Press, 1998, pp. 215-223.

[25] M. F. Porter, “An algorithm for suffix stripping,” Program,
vol. 14, no. 3, pp. 130-137, 1980.

[26] A. Singhal, M. Mitra, and C. Buckley, “Learning routing
queries in a query zone,” in Proceedings of the Twentieth
Annual Internal ACM SIGIR Conference on Research and
Development in Information Retrieval, July 1997, pp. 25-32.

[27] IBM, “Unstructured information management architecture
SDK,” Website, 9 2006. [Online]. Available:
http://www.alphaworks.ibm.com/tech/uima

[28] Alias-I, “LingPipe,” Website, 9 2006. [Online]. Available:
http://www.alias-i.com/lingpipe/index.html

[29] OpenNLP, “OpenNLP,” Website, 9 2006. [Online].
Available: http://opennlp.sourceforge.net/

[30] I. H. Witten and E. Frank, Data Mining: Practical machine
learning tools and techniques, 2nd ed. San Francisco:
Morgan Kaufmann, 2004.

569

Research Track Paper

