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ABSTRACT 
We introduce multiple topic tracking (MTT) for iScore to better 
recommend news articles for users with multiple interests and to 
address changes in user interests over time. As an extension of the 
basic Rocchio algorithm, traditional topic detection and tracking, 
and single-pass clustering, MTT maintains multiple interest 
profiles to identify interesting articles for a specific user given 
user-feedback. Focusing on only interesting topics enables iScore 
to discard useless profiles to address changes in user interests and 
to achieve a balance between resource consumption and 
classification accuracy. Also by relating a topic’s interestingness 
to an article’s interestingness, iScore is able to achieve higher 
quality results than traditional methods such as the Rocchio 
algorithm. 

We identify several operating parameters that work well for MTT. 
Using the same parameters, we show that MTT alone yields high 
quality results for recommending interesting articles from several 
corpora. The inclusion of MTT improves iScore’s performance by 
9% in recommending news articles from the Yahoo! News RSS 
feeds and the TREC11 adaptive filter article collection. And 
through a small user study, we show that iScore can still perform 
well when only provided with little user feedback.  

Categories and Subject Descriptors 
H3.3.1 [Information Storage and Retrieval]: Content Analysis 
and Indexing, Retrieval Models, Search Process 

General Terms 
Algorithms, Management, Performance, Design, 
Experimentation, Human Factors. 

Keywords 
News filtering, personalization, news recommendation 

1. INTRODUCTION 
An explosive growth of online news has taken place in the last  
few years. Users are inundated with thousands of news articles, 
only some of which are interesting. A system to filter out 
uninteresting articles would aid users that need to read and 
analyze many news articles daily, such as financial analysts, 
government officials, and news reporters.  

 
In [1], iScore is introduced to address how interesting articles can 
be identified in a continuous stream of news articles. Instead of 
applying the most naïve approach for news filtering, which is to 
learn keywords of interest for a user [2-4], iScore tries to identify 
the multitude of characteristics that make an article interesting for 
a specific user. In iScore, a variety of features are extracted from 
each article, ranging from topic relevancy to source reputation. 
The combination of multiple features yields higher quality results 
for identifying interesting articles for different users than 
traditional methods, such as the Rocchio algorithm [5].  
Despite incorporating other article features in addition to 
relevancy to topics of interest, iScore still performs poorly with 
users that have very general interests (as opposed to very specific 
interests). iScore addresses relevancy by using the output of 
classifiers (e.g., Rocchio) that maintain a single interest profile. 
Unfortunately, iScore suffers when a user has a set of interests 
that are orthogonal to one another, which cannot be accurately 
represented by a single interest profile. In this paper, we extend 
iScore to address this shortcoming by extending the traditional 
Rocchio algorithm by using multiple profile vectors instead of 
one. This is a similar technique used in topic detection and 
tracking (TDT) [6], but applied to an online personalized news 
recommendation setting. Unlike in a TDT environment, where all 
new topics are identified and continually tracked by identifying 
their related articles, identifying interesting articles for a specific 
user is different for two reasons: first, not all topics are of equal 
interest to a user; second, a user’s interest in a topic continually 
changes overtime. A topic that may have been interesting in the 
past may not be interesting in the future. 
Addressing these two distinctions between TDT and news 
recommendation and the shortfall of the existing iScore system, 
we make the following contributions: 

1. Instead of identifying all new topics and tracking all 
articles for those topics as in TDT, we focus on the 
specific users interests, which are under continuous 
evolution. Focusing on only evolving user interests 
instead of all topics allows for more efficient resource 
utilization. 

2. We show that the use of multiple profile vectors yield 
significantly better results than traditional methods, 
such as the Rocchio algorithm, for identifying 
interesting articles. Additionally, the addition of 
tracking multiple topics as a new feature in iScore, 
improves iScore classification performance. 

3. For a specific user as a case study, we analyze the 
operating parameters for our algorithm for their 
resource usage and classification performance. 
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4. We show that multiple topic tracking yields 
significantly better results than the best results from the 
last TREC adaptive filtering run. 

2. RELATED WORK 
2.1 News Recommendation Systems 
In this paper, we extend iScore [1] to better handle multiple user 
interests. iScore is a recommendation system in a limited user 
environment. In addition to iScore, there are a variety of different 
news recommendation systems. 

Work by [7] ranks news articles and new sources based on several 
properties in an online method. They claim that important news 
articles are clustered. They also claim that mutual reinforcement 
between news articles and news sources can be used for ranking, 
and that fresh news stories should be considered more important 
than old ones. In our approach, we rank news articles based on 
various properties in an online method, but instead of ranking 
articles using mutual reinforcement and article freshness, we 
study a different variety of features. Additionally, when training 
our classifiers, we also take into account freshness by considering 
the most recent news articles as more important than older ones. 
Other systems perform clustering or classification based on the 
article’s content, computing such values as TF-IDF weights for 
tokens. A near neighbor text classifier [4] uses a document vector 
space model. A personalized multi-document summarization and 
recommendation system by [8] recommends articles by 
suggesting articles from the same clusters in which past 
interesting articles are located. Another clustering approach, 
MiTAP [9] monitors infectious disease outbreaks and other global 
events. Multiple information sources are captured, filtered, 
translated, summarized, and categorized by disease, region, 
information source, person, and organization. However, users 
must still browse through the different categories for interesting 
articles. Unlike [8] and [9], the multiple topic tracking (MTT) 
presented here and used by iScore clusters news articles in an 
online fashion as documents arrive and as the user interacts with 
iScore. Instead of pre-computing clusters of all documents, iScore 
only computes centroids of clusters of interesting articles as 
articles arrive on the document stream. In other words, the 
clusters are user-specific, as interesting articles differ from user to 
user. Furthermore, in MTT, each cluster, which represents a topic 
of interest, has an associated interestingness value which is 
continually updated. Using this topic interestingness and an 
article’s relationship with the topic, MTT infers the article’s own 
interestingness. Also, unlike other cluster-based recommendation 
systems, iScore’s MTT metric discards uninteresting or unhelpful 
clusters over time to improve the quality of results and resource 
usage. 

2.2 Adaptive Information Filtering 
Our work in iScore is closely related to the adaptive filtering task 
in TREC, which is the online identification of news articles that 
are most relevant to a set of topics. The task is different from 
identifying interesting articles for a user because an article that is 
relevant to a topic may not necessarily be interesting. However, 
relevancy to a set of topics of interest is a prerequisite for 
interestingness. The report by [10] summarizes the results of the 
last run of the TREC filtering task. In the task, topic profiles are 
continually updated as new articles are processed. The profiles are 

used to classify a document’s relevancy to a topic. Like much of 
the work in the task, we use adaptive thresholds and incremental 
profile updates. 
In [11], the authors use a variant of the Rocchio algorithm, in 
which they represent documents as a vector of TF-IDF values and 
maintain a profile for each topic of the same dimension. The 
profile is adapted by adding the weighted document vector of 
relevant documents and by subtracting the weighted vector of 
irrelevant documents. Other methods explored in TREC11 include 
using a second-order perceptron, an SVM [12], a Winnow 
classifier [12], language modelling [13], probabilistic models of 
terms and relevancy [14], and the Okapi Basic Search System 
[15]. iScore’s MTT, like Rocchio  and [11], represents documents 
as vectors of TF-IDF values but instead of maintaining a single 
profile, MTT maintains multiple profiles to represent the distinct 
topics that the user is interested in and relates the topic’s own 
interestingness to the article’s interestingness. 

2.3 Ensembles 
Other works, like ours, have leveraged multiple existing 
techniques to build better systems for specific tasks. For example, 
in [16], the authors combine two popular webpage duplication 
identification methods to achieve better results. Another example 
is by [17], which combines the results from multiple outlier 
detection algorithms that are applied using different sets of 
features.  
A closely related ensemble work by [18] combines multiple 
ranking functions over the same document collection through 
probabilistic latent query analysis, which associates non-identical 
combination weights with latent classes underlying the query 
space. The overall ranking function is a linear combination of the 
different ranking functions. In contrast to [18], we combine 
functions that are not necessarily ranking functions in isolation. 
Each function is designed to capture a different aspect of 
interestingness and needs to be combined to generate meaningful 
scores for interestingness. MTT is another aspect of 
interestingness that is easily added to the iScore framework. 

2.4 Topic Detection and Tracking 
Topic detection and tracking (TDT) identifies new events and 
groups news articles that discuss the same event. Formally, TDT 
consist of five separate tasks: (1) topic tracking, (2) first story 
detection, (3) topic detection, (4) topic linkage, and (5) story 
segmentation [6]. 
Many TDT systems, like [19], [20], and [21] are simply a 
modification of a single pass clustering algorithm. They compare 
a news story against a set of profile vectors kept in memory. If the 
story does not match any of the profiles by exceeding a similarity 
threshold, the story is flagged as a new event and a new profile is 
created using the document vector of the news story. Otherwise, 
the news story is used to update the existing profiles. Other work, 
such as [22], add simple semantics of locations, names, and 
temporal information to the traditional term frequency vectors 
used in previous work.  
Although we make use of a similar single-pass clustering 
algorithm, there are several subtle differences between identifying 
interesting articles and TDT. First, not all topics are of equal 
interest to a user. Instead of identifying all new topics and 
tracking all articles for those topics as in TDT, we focus on the 
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specific users interests, which are under continuous evolution. 
Additionally, we use the interestingness of topics when evaluating 
the interestingness of news articles that belong to their respective 
topics. Furthermore, a user’s interest in a topic continually 
changes over time. A topic that may have been interesting in the 
past may not be interesting in the future. Consequently, we 
discard old profile vectors that are no longer of interest to reduce 
resource consumption, to speed up document evaluation, and to 
improve the quality of results.  
Another closely related of work is in the discovery of 
evolutionary theme patterns (ETP) from text [23]. In ETP, 
documents are partitioned into possibly overlapping 
subcollections according to their publication time. The most 
prominent themes (or subtopics) are extracted from each 
subcollection. For any themes in two different subcollections, an 
ETP solution decides whether there is an evolutionary transition 
from one theme to the other. The general ETP problem is not 
restricted to operation within an online and continuous 
environment, so the solution posed by [23] is an offline data 
mining solution to discovering and clustering patterns and so is 
not directly applicable to discovering interesting articles as they 
are published. Additionally, the solution posed by [23] does not 
learn which themes or topics are of interest to the user, and so all 
themes are maintained and are not useful for classifying the 
interestingness of an article. In ETP, the evolutionary 
relationships among themes at different times are also explicitly 
identified, which is not necessary for discovering the most 
interesting articles for the user as they are published. 

3. iScore Architecture 
In iScore, news articles are processed in a streaming fashion, 
much like the document processing done in the TREC adaptive 
filter task. Articles are introduced to the system in chronological 
order of their publication time. Once the system classifies an 
article, an interestingness judgment is made available to the 
system by the user.  
The article classification pipeline consists of four phases, shown 
in Figure 1. In the first phase, for an article d, a set of feature 
extractors generate a set of feature scores F(d) ={f1(d), 
f2(d),…,fn(d)}. In [1], we implemented several topic relevancy 
features, uniqueness measurements and other features, such as 
source reputation, freshness, subjectivity, and polarity of news 
articles. Then a classifier C generates an overall classification 
score, or an iScore I(d): 

 ))(),...,(),(()( 21 dfdfdfCdI n=  (1) 

In [1], we found that a naïve Bayesian classifier can identify 
interesting articles well. Next, the adaptive thresholder thresholds 
the iScore to generate a binary classification, indicating the 
interestingness of the article to the user. The adaptive thresholder 
tries to find the optimal threshold that yields the best metric 
result, such as F-measure (where β = 0.5) or TREC11’s utility 
metric T11SU. In the final phase, the user examines the article 
and provides his own binary classification of interestingness (i.e., 
tagging) I′(d). This feedback is used to update the feature 
extractors, the classifier, and the thresholder. The process 
continues similarly for the next document in the pipeline. Because 
of iScore’s extensibility, multiple topic tracking (MTT) is added 
to the system as a new feature extractor.  

4. MULTIPLE TOPIC TRACKING 
4.1 Motivation 
Many information filtering algorithms are based on the Rocchio 
algorithm, which represents topics and documents as vectors. 
Each value of the vector is a TF-IDF value for its respective term 
[5]. A single profile vector p is maintained. For each document, 
the cosine similarity, or the cosine of the angle between the 
document vector d  and the profile vector is measured. 

 
||||

),cos(
pd
pdpd •

=  (2) 

The document is classified as relevant or interesting if the 
similarity is greater than some threshold. The profile vector is 
updated by adding the vector of interesting documents to the 
profile vector. There are variations of the Rocchio algorithm, such 
as subtracting irrelevant document vectors from the profile vector 
[11]. 

 
Figure 1: Article classification pipeline. 

 
Figure 2: Failure of identifying relevant documents for 

multiple topics. 
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The Rocchio algorithm tries to find the single ideal query, or 
vector, that would find all interesting articles, by using the 
centroid of the cluster that would contain all interesting articles. 
However, because of the diversity in the set of interests just for a 
single user, finding a single ideal query is not possible [24]. If a 
user has a wide range of interests, using one vector to represent 
his interests would dilute the sensitivity of the Rocchio algorithm. 
Figure 2 illustrates this problem. Although the cluster of all the 
interesting documents would contain interesting documents, it 
would also contain many uninteresting articles due to its size. If 
the user is interested in many orthogonal topics, then the 
encompassing cluster would be much larger and would also 
contain many more uninteresting articles as well. 
Instead, in MTT, a set of more narrow queries or profile vectors 
that more accurately represent a user’s interests than a single 
vector is maintained. For example, in Figure 2, MTT maintains 
smaller topic clusters instead of the larger encompassing cluster, 
improving classification precision. In other words, a set of experts 
is generated and maintained (one for each specific interesting 
topic) instead of referring to a single general expert. Using 
specialized profiles instead of a single general profile reduces 
classification bias by focusing more on specific topics; at the 
same time, using multiple vectors keeps classification variance 
low.  
Also the traditional Rocchio algorithm and TDT algorithms do 
not take into account the different degrees of interest among 
different topics. By focusing on individual topics, MTT can learn 
the user’s level of interest for a specific topic and relate the 
topic’s interestingness to related articles; thereby, improving the 
quality of news recommendation results. By associating a level of 
interest for specific topics, MTT can also learn when a user’s 
interests have changed. Topics that were of interest in the past 
may no longer be interesting in the future. Topics that have grown 
to be uninteresting to the user can be discarded. 

4.2 Algorithm 
In MTT, each document and profile vector is represented as a TF-
IDF vector, where each value of the vector is the TF-IDF value of 
the vector element’s corresponding stemmed term. Terms are 
stemmed using the Porter algorithm [25] and stop-words are 
ignored. A set of profiles P is maintained, which is initially 
empty. Until an interesting article arrives on the document stream, 
each article is scored with a 0. When an interesting article does 
arrive, a new profile vector p1 is created using the article’s TF-
IDF vector and added to P. Each subsequent article on the 
document stream with a document vector d is processed as 
follows: 

1. Find the profile vector with the maximum similarity 
with d. This profile represents the closest topic of 
interest to the document and is denoted as pmax. 

2. The score for a document is the product of the precision 
of pmax for predicting interesting articles and the 
similarity between pmax and d. In other words: 

 ),cos(*)()( maxmax dppprecisiondfMTT =  (3) 
The precision of pmax describes how well pmax can 
accurately identify interesting articles. The precision 
describes how interesting the user finds the topic that 
the profile vector represents. By multiplying the 

interestingness of the topic with the document’s 
similarity to the topic, we relate the interestingness of 
the containing topic to the document.  

3. If the article is interesting and the similarity between d 
and pmax is less than the cluster threshold tcluster, a new 
profile is generated using d. However, if the similarity 
is greater than or equal to tcluster, then pmax is updated as 
follows: 

 dpp += maxmax  (4) 
Intuitively, a new profile is created because a new topic 
has been encountered. Each profile vector is simply the 
centroid of the cluster of its related articles. 

4. If the article is not interesting and the similarity 
between d and pmax is greater than the classification 
threshold tclassification, then pmax is updated as follows: 

 dpp *maxmax γ−=  (5) 
Because the profile misclassifies the article as 
interesting, the cluster is updated to remove the 
influence of terms that are not useful for predicting 
interestingness. This technique is similar to query 
zoning [26], where a select set of non-relevant articles 
that have some relationship to a user’s interests is used 
for updating profile vectors. The parameter γ determines 
how much weight negative documents in the query zone 
have on the topic profile.  

As more documents are processed, it is possible that many 
profiles may be kept and maintained, making MTT expensive. 
However, there are two discard methods that can reduce resource 
consumption and improve the quality of results. The first method 
discards profiles whose topics are no longer interesting. 
Mentioned earlier, each profile vector has an associated precision 
for identifying interesting articles, which is defined as: 

 
tionclassifica

tionclassifica

tdp
tdp

pprecision
>

>
=

),cos( w/ Articles#
),cos( w/ articles gInterestin#

)( (6) 

In other words, the precision of a profile p is the proportion of 
articles that belong to p that are truly interesting. Profiles that 
have a precision less than the threshold tprecision, are discarded 
because the topic that the profile represents is no longer 
interesting to the user.  
The second method discards profiles whose topics are no longer 
active or current. At most M profiles are maintained in memory. If 
there are already M profiles being maintained, when a new profile 
must be created, then an old profile must be discarded and the 
least recently used profile is selected for discard. A profile is 
considered “used” when an interesting article best matches the 
profile (i.e., when the profile is selected as pmax). 

5. EXPERIMENTAL RESULTS 
iScore is implemented with an assortment of tools in Java. The 
system pipeline is implemented with the IBM UIMA framework 
[27], using classifiers from LingPipe [28], OpenNLP [29], and 
Weka [30].  
We evaluate iScore against three data sets. The first data set is a 
collection of 35,256 news articles from all Yahoo! News RSS 
feeds, collected between June and August 2006. The classification 
task is to identify which articles come from which RSS feed. The 
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43 RSS feeds considered for labeling are feeds of the form: “Top 
Stories <category>”, “Most Viewed <category>”, “Most 
Emailed <category>”, and “Most Highly Rated <category>.” 
Because user evaluation is difficult to collect and such data is 
often sparse, the Yahoo! news articles and their source feeds are 
used for their resemblance to user labeled articles. For example, 
RSS feeds such as “Most Viewed Technology” is a good proxy of 
what the most interesting articles are for technophiles. Other 
categories, such as “Top Stories Politics,” are collections of news 
stories that the Yahoo! political news editors deem to be of 
interest to their audience, so the feed also would serve well as a 
proxy for interestingness. 
The second data set consists of user taggings and articles from the 
web collected between August 2006 to January 2007. Users are 
asked to tag articles that they read as interesting or not interesting 
using a web browser plug-in. Web pages of the referring page of 
the tagged article are also downloaded to determine the articles 
that the user chose not read, which is considered as uninteresting. 
After manually discarding junk web pages (i.e., non-news 
articles), a total of 13,281 web pages remain with six users who 
tagged at least 49 interesting articles. Using this data set, the 
classification task is to identify the interesting news articles for 
each of the six users from each user’s own pool of articles that he 
had access to. Unfortunately, this data set is small compared to 
the other data sets, but it should provide some insight on the 
relative performance of classifiers on real-world data.  
The final data set comes from the TREC11 adaptive filter task, 
which uses the Reuters RCV1 corpus and a set of assessor manual 
taggings for 50 topics, such as “Economic Espionage.” The 
corpus is a collection of 723,432 news articles from 1996 to 1997. 
Although the TREC adaptive filter work addresses topic 
relevancy and not necessarily interestingness, the task is done in a 
similar online and adaptive fashion as in iScore, and the topics 
may serve as reasonable proxies for a set of users.  

We use precision, recall, and F-measure, where β = 0.5, which 
weights precision more than recall, for system evaluation: 

 
|ArticlesInt |

2
|Retr Articles|

|Retr ArticlesInt |
2

1

β

β

β
+

⎟
⎠
⎞

⎜
⎝
⎛ +

=F  (7) 

F-measure is 0 when the number of articles retrieved is 0. 
TREC11’s T11SU is also used for comparing the performance of 
iScore with the work done in TREC11:  

 
|Articles gInterestin|*2

|Retr ArticlesUnint | |Retr ArticlesInt |*211

1)5.0,11max(*211
−

=

−=

NUT

NUTSUT
 (8) 

For systems that retrieve no articles, the system would have a 
T11SU score of 0.33. 
Resource consumption is measured as the number of profiles that 
is currently being maintained. The run-time and memory 
consumption of MTT is linear with respect to the number of 
profiles. Statistical significance tests are applied where 
appropriate using the t-test at p ≤ 0.1.  

5.1 Case Study: Operating Parameters 
To find good values for the operating parameters: tcluster, 

tclassification, tprecision, γ, and M, we evaluate the resource 
consumption and the quality of results produced by MTT with 
various parameters for the “Politics Top Stories” RSS feed. For 
simplicity and to evaluate MTT in isolation, we use the pipeline 
shown in Figure 3 instead of the complete iScore pipeline. The 
adaptive thresholder optimizes for F-measure (β = 0.5). 
We first evaluate the effect of tcluster on MTT by varying tcluster 
while holding tprecision, tclassification, M, and γ at 0.5, 0.5, ∞., and 0, 
respectively. The results are shown in Figure 4a. As tcluster 
increases, articles are discouraged from clustering. Consequently, 
the average number of profiles held increases as tcluster increases. 
Low tcluster values cause fewer clusters to be formed, causing MTT 
to behave similarly as Rocchio when tcluster is low. The figure also 
shows that any tcluster value greater than 0.6, there is no significant 
increase in the quality of results while there is an increase in 
resource consumption. From this observation, we use 0.6 for tcluster 
for all subsequent experiments.  
Next we evaluate the effect of tprecision on MTT by varying tprecision 
while holding tcluster, tclassification, M, and γ at 0.6, 0.5, ∞., and 0, 
respectively. Figure 4b shows that there is little variation in 
performance overall when tprecision is varied. However, there is a 
slight increase in performance when tprecision increases from 0.3 to 
0.5. There is also a decrease in resource consumption in the same 
range. Overall, fewer profile vectors are kept in memory but the 
profiles are more precise in identifying interesting articles when 
tprecision is increased. Performance peaks when tprecision = 0.5, with 
performance slightly decreasing for any values beyond 0.5 with 
very little decrease in resource consumption. Consequently, for all 
later experiments, we use 0.5 for tprecision.  
Next we evaluate tclassification on MTT by varying tclassification while 
holding tcluster, tprecision, M, and γ at 0.6, 0.5, ∞., and 0, respectively. 
As tclassification increases, the average number of profiles held in 
memory increases. Profiles are discarded when they generate too 
many false positives due to the minimum precision discard 
mechanism. Higher tclassification  values make it more difficult for 
the profiles to generate false positives (while generating many 
more false negatives), so fewer profiles are discarded. Figure 4c 
shows that a good value for tclassification  is 0.4. Values less than 0.4 
cause profiles to generate too many false positives and are 
consequently discarded, so fewer profiles are kept, decreasing the 
number of topics that can be tracked. However, too high of a 
value for tclassification will lead to too many false negative 
classifications, as shown in the decrease in recall in Figure 4c. 
Interestingly, there is also a decrease in precision for too high 
tclassification  values. This is most likely due to noise caused by 
anomalous taggings that would normally be removed when low 
precision profiles are discarded. It is also due to changes in user 
interests which are immediately addressed by removing low 
precision profiles as well. For all subsequent experiments, we use 
0.4 for tclassification.. 

 
Figure 3: MTT evaluation pipeline. 
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Next we evaluate the effect of M, which is the maximum number 
of profiles kept in memory, while holding tcluster, tprecision, 
tclassification, and γ at 0.6, 0.5, 0.4, and 0, respectively. Figure 4d 
shows that that as the number of maximum profiles increase, the 
quality of results improve, with significantly higher precision. 
However, it is inconclusive to determine if it is better to leave the 
number of profiles unbounded because the number of profiles 

kept in memory for “Politics Top Stories” is at most 500. It is 
difficult to determine the tradeoff in resource consumption with 
performance, given the results in Figure 4d. A data set that spans 
a large period of time is likely needed to determine a good M 
value. So for all subsequent experiments, we leave the number of 
profiles kept in memory to be unbounded, or M=∞. 
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Figure 4: Operating parameters for Politics Top Stories from the Yahoo! RSS Feeds 
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Finally, we evaluate the effect of γ, which controls how much of 
an effect that misclassified uninteresting articles have (compared 
to interesting articles), by varying γ, while holding tcluster, tprecision, 
tclassification, and M at 0.6, 0.5, 0.4, and ∞., respectively. Figure 4e 
shows that there is very little effect caused by γ. There is only a 
slight increase in performance when γ =0.5. However, there is a 
significant change in memory consumption, as γ increases. Since 
the profiles are actually the centroids of clusters of interesting 
documents, using a large γ value, changes the natural document 
clusters. As more documents are processed, new clusters must be 
generated since the natural clusters no longer exist. However, 
using a small non-zero γ value can help reduce the noise in the 
clusters and improve the classification quality. For all subsequent 
experiments, we use 0.5 for γ.  
A similar case study was performed for the “Technology Top 
Stories” RSS feed. Good values found for the feed are tcluster = 0.7, 
tprecision = 0.8, tclassification = 0.4, and M = ∞. Using these values, 
varying γ had no effect. The parameter configuration seems to be 
user-dependent. However, for simplicity, we use the good 
parameters found for the “Politics Top Stories” feed for all 
subsequent experiments. 

5.2 Overall Performance 
Given the results from the case study for finding good operating 
parameters for the “Politics Top Stories” RSS feed, we applied 
MTT with the same parameters to all the other RSS feeds. In this 
experiment as well, the adaptive thresholder optimizes for F-
measure. We use tcluster=0.6, tprecision=0.5, tclassification=0.4, M=∞, 
and γ =0.5. The mean average results are shown in Figure 6.  
In Figure 6a, we compare the overall performance of various 
classifiers after processing 10,000 documents, including Rocchio 
and the Rocchio variant from [11], which performed the best in 
the TREC11 adaptive filter task. The figure shows that MTT 
performs significantly better than the Rocchio variant, with a 
mean average F-measure (where β=0.5) of 0.500, performing 40% 
better. MTT also outperforms Rocchio by 82%. According to the 
t-test, MTT’s improvements over Rocchio and its variant are 
statistically significant (p = 2.7E-11 over Rocchio, p = 1.6E-06 
over the Rocchio variant).  
We also evaluate MTT when it is included in the complete iScore 
pipeline. We evaluate two iScore systems, one with the complete 
feature set from [1] and one with a reduced feature set with the 
highest correlated features to interestingness. The reduced feature 
set contains all the features from [1] except for freshness, new n-
gram anomaly detection, and n-gram and tokenized language 
modelling anomaly detection. Figure 6a shows iScore with MTT 
has a similar F-measure performance as MTT alone, with iScore 
yielding greater recall and lower precision. Figure 6a also shows 
that the inclusion of MTT into iScore results in a statistically 
significant increase of 9% in F-measure (p = 0.09). Closer 
examination of each individual RSS feed shows positive 
improvement for most RSS feeds in Figure 5. RSS feeds with a 
lower average number of profiles held in memory due to very few 
interesting articles are more likely to yield negative improvement.  
Figure 6b shows the performance of the classifiers over time as 
well as the mean average number of profiles held in memory. The 
F-measure dramatically increases after processing 10,000 articles. 
The figure also shows statistically significant improvements (p < 
0.02) that MTT and iScore with MTT have over Rocchio, the 
Rocchio variant, and iScore without MTT. After processing 
25,000 documents, there is a statistically significant 10% increase 
in performance of iScore caused by the inclusion of MTT (p = 
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Figure 5: Overall improvement (after processing 10,000 

documents) of iScore by including MTT for individual RSS 
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Figure 6: Performance over time of iScore and MTT using the Yahoo! RSS Feeds. Figure 5a shows the overall performance of the 

classifiers after processing 10,000 documents. Figure 5b shows the performance of the classifiers over time. 

566

Research Track Paper



0.02), which is consistent to what was observed in Figure 6a. 
Although, it seems that MTT alone performs better than iScore 
with MTT after processing 25,000 documents, the t-test shows 
that that increase is not statistically significant (p = 0.23) for both 
feature sets. The figure also shows that the average number of 
profiles held increases linearly as more documents are processed. 
This behavior is expected since new topics continually appear and 
the maximum number of profiles is left unbounded for these 
experiments so no unused interesting topics are discarded. Further 
study with a larger corpus is necessary to determine a good 
maximum, if any. 

5.3 User Study 
In addition to the Yahoo! RSS feed articles, we also compare the 
performance of MTT and iScore with Rocchio and the Rocchio 
variant on a collection of web pages tagged by users using a web 
browser plug-in. In our experiments where positive user taggings 
are sparse, we find that the adaptive thresholder performs better 
when it optimizes for T11SU instead of F-measure, so in this set 
of experiments, the adaptive thresholder optimizes for T11SU. 
Also due to the scarcity of negative user taggings compared to the 
size of the entire data collection, we infer additional negative user 
taggings for articles that the user did not read but were accessible 
from the referring page of an article tagged by the user. 
Consequently, for each user, interesting news articles are 
predicted from a pool of articles consisting of articles that the user 
actually tagged and articles that were accessible from referring 
pages of tagged articles. We use the same operating parameters 
found in our case study for the “Politics Top Stories” RSS feed. 
The results of the user study are shown in Figure 7. In Figure 7a, 
MTT has higher precision than the Rocchio variants but has much 
lower recall. As a result, MTT’s F-measure performance is lower 
than the Rocchio variants. iScore with MTT performs 10% better 
than Rocchio in terms of F-measure. And the inclusion of MTT 
improves iScore by 2%. However, the comparison of the results is 
difficult to determine because the t-test indicates that the 
comparisons are not statistically significant with p ≥ 0.25. More 
users are necessary to make a definitive judgment, which is likely 
to be similar to the statistically significant judgments made with 
the Yahoo! data set. Closer inspection of each individual user 

shows F-measure improvement to iScore for most users when 
MTT is included into iScore’s feature set, as shown in Figure 7b.  
Although a smaller and potentially noisier data set, this limited 
user study shows that iScore with MTT can work well even with a 
limited number of user taggings. For the Yahoo! data set, each 
RSS feed has an average of 655 tagged articles. In contrast, this 
limited study, as shown in Figure 7b, has a much smaller 
collection of taggings with each user tagging an average of 95 
interesting articles.  
Although iScore with MTT performs better than traditional 
techniques, it performs poorer in this data set than in the Yahoo! 
data set, which is most likely due to the noise in the data 
collection caused by the inference of additional negative user 
taggings. Also the web pages contain peripheral information in 
addition to the news story, such as navigation menus and links to 
other web pages, which make processing the content of the news 
story more difficult.  

5.4 TREC Filtering 
Although the TREC11 adaptive filter task is to retrieve all articles 
relevant to a query, regardless of its interestingness to a user, we 
want to see how well MTT and iScore performs against other 
adaptive filters from TREC11. MTT and the full iScore feature set 
are compared with the best filters from each participating group in 
TREC11 against the TREC11’S RCV1 corpus in Figure 8. As in 
the user tagging collection, the taggings in the TREC collection 
are very sparse relative to the size of the collection, so the 
adaptive thresholder optimizes for T11SU as well. We use the 
same operating parameters found in our case study for the 
“Politics Top Stories” RSS feed. Figure 8a shows that MTT has 
an F-measure 37.8% better than the best performing filter in 
TREC11 [11]. MTT also yields higher precision and recall. When 
MTT is incorporated into iScore, F-measure improves by 9% but 
is not statistically significant (p = 0.25). According to [1], features 
other than topic relevancy features are not useful for identifying 
interesting articles to the TREC topics. The addition of irrelevant 
features causes the statistically significant difference in 
performance between MTT alone and iScore with MTT (p < 0.01)  
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Figure 7: Performance of iScore and other classifiers in the user tagging collection. Figure 7a shows the overall performance of the 
classifiers. Figure 7b shows the overall of iScore by including MTT for individual users along with the number of tagged articles for 

each user.  
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while only improving iScore slightly when added as an additional 
feature.  
Figure 8b shows the performance of iScore and MTT along with 
the top three adaptive filters from Figure 8a. TREC only reports 
T11SU performance over time instead of F-measure, so T11SU is 
shown in Figure 8b. The figure shows that MTT performs much 
better over time than all the other classifiers. Like Figure 8a, 
Figure 8b does shows statistically insignificant improvement of 
2% (p = 0.31) for documents after time period 6. 
Comparing Figure 6b and Figure 8b, the resource consumption in 
the TREC data is much less than in the Yahoo! data. Despite the 
larger size of the TREC corpus, user interests in the TREC data 
set are much narrower than that of the Yahoo! data so fewer 
profile vectors are necessary to represent the entire range of user 
interests. 

6. DISCUSSION AND FUTURE WORK 
Interestingly, in the Yahoo! data set, MTT alone yields 
statistically similar F-measure performance as iScore using the 
implemented features from [1] along with MTT. MTT alone may 
be sufficient if precision is desired over recall. But if a balance of 
recall and precision is needed, then iScore with MTT would be 
better than MTT alone. Also, there are use cases where MTT may 
be insufficient. MTT excels at identifying new interesting articles 
for topics that have already been seen. However, MTT would fail 
at identifying “flash point” articles that discuss new interesting 
topics that are unrelated to the previously interesting topics. On 
the other hand, the iScore framework allows for future features to 
be added to the classification pipeline, such as those that would 
help identify “flash point” articles, in addition to MTT as another 
feature.  
The inclusion of MTT into iScore has improved the classification 
of interesting documents for most users and data sets by 9% 
overall. However, there is room for further study. More news 
articles from the Yahoo! RSS feeds are being collected, so that 
iScore can be evaluated over a larger corpus (greater than 100,000 
articles). In our case study, due to the size of the Yahoo! RSS feed 
used to evaluate MTT and the number of relevant articles in the 
TREC11 adaptive task, the resource usage behavior of MTT when 
the maximum number of profiles is varied could not be accurately 

determined. A larger Yahoo! RSS feed collection spanning a large 
time period would help determine a good value, if any. More user 
taggings of articles by volunteers are being collected to improve 
the quality of the user tagging data set as well.  
Additionally, in the presented experiments, the parameters were 
static for all users. In our case study, it was shown that two 
different users can have two different near-optimal parameters 
configurations. Using the parameter configuration found here as 
starting points and given the expected behavior of MTT for 
various parameters, optimal parameters tailored for specific users 
with specific memory constraints and quality requirements can be 
dynamically learned as more documents are processed so that 
maximum performance for each user can be achieved with MTT. 

7. CONCLUSION 
Multiple Topic Tracking (MTT), inspired by the Rocchio 
algorithm and single-pass clustering algorithms used in topic 
detection and tracking, is shown to be an effective technique to 
classifying news articles as interesting or not interesting for 
specific users. By explicitly and distinctly tracking multiple topics 
of user interest and their degree of interestingness, MTT addresses 
the shortcomings of the Rocchio algorithm’s usage of a single 
query to find all interesting articles from across multiple topics 
and its inability to quickly adapt to changes in user interests.  
Through a case study for a single RSS feed, we found reasonably 
good operating parameters for MTT. Using these parameters, 
MTT and iScore with MTT is able to perform 40% to 82% better 
than existing Rocchio variants when recommending interesting 
articles from the Yahoo! News RSS feeds. For the TREC adaptive 
filter task, MTT overall performs 37.8% better the best adaptive 
filter from TREC11. MTT also outperforms the same filter over 
time as more documents are processed in terms of TREC11’s 
T11SU metric. The inclusion of MTT can improve iScore’s 
performance by 9% overall. 
Although more users are necessary to make a more definitive 
conclusion on the performance of MTT and iScore in our small 
user study, iScore with MTT seems to outperform Rocchio and its 
variant. Also through our limited user study, we show that iScore 
can still work relatively well even with very few positively tagged 
articles.  
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Figure 8: Performance of iScore and MTT in the TREC11 adaptive filter task. Figure 8a shows the overall performance of the 
classifiers. Figure 8b shows the performance of the classifiers over time.  
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